Message Boards Message Boards

0
|
7618 Views
|
1 Reply
|
0 Total Likes
View groups...
Share
Share this post:

Interesting patterns in a set of new constants

September the 4, 2011, I first described the convergents constants (cc), as rudimentary defined at https://oeis.org/wiki/Convergents_constant . The cc for Floor[ n1 ] < n1 < Ceiling[n1] is the same for any Floor[n1]< nx <Ceiling[n1] , where the n's are rational. Perhaps a little clearer is the example, cc(11/10)=cc(19/10), and cc(21/10)=cc(29/10), but cc(19/10) does not equal cc(21/10) because 1< 19/10< 2 and 2< 21/10< 3.

The cc of a positive integer is that same integer.

Here is the code for convergents constants of some non-integer, rational numbers.

Quiet[Table[                         (*Let l start out as a rational non-integer.*)l = Rationalize[x + RandomReal[], 0];
     For[a = 1, a < 120,         (*make a list of convergents of l.*)                       c = Convergents[l, 90];
                             (*Find the continued fraction that has that list as its divisors*)     l = FromContinuedFraction[c],
     a++];
     Print[N[l, 20]], {x, 0, 120}]; // TableForm]

The list of cc's that you get indicate that as n goes to Infinity, cc(n) goes to n. That is interesting, but not too surprising.

As far as cc(10^(nx)) going to 10^(nx), there is a series for that!

Table[x = 10^n; l = x + RandomReal[];
 For[a = 1, a < 60, c = Convergents[l, 90];
  l = FromContinuedFraction[c], a++]; Print[N[l, 100]], {n, 0, 10}]

gives the a list of cc(10^(nx)) for several x's.

I noticed the short runs of repeating numbers and found a partial pattern to them!

Let

f[n_] := -(10^n) + 
  Sum[(-1)^(m + 1)*(m + 1)!*10^(-(2 m + 1) n), {m, 0, 3}] - 
  112*10^(-9*n) + 566*10^(-11*n) - 3000*10^(-13*n) + 
  16444*10^(-15*n) + 24*10^(-16*n) - 92424*10^(-17 n) - 
  276*10^(-18*n) + 530320*10^(-19*n) + 3792*10^(-20 *n)

+...,

where (...) follows a pattern that is hard to describe exactly, and then cc(10^nx)+f[n sub x] gives a number magnitudes closer to 0 than that of cc(10^nx ) -10^nx, especially asnx gets any decent size to it at all!

Here is a code with the part of the pattern I found:

Table[x = 10^n;
  l = x + Rationalize[RandomReal[WorkingPrecision -> 200]];
   For[a = 1, a < 80, c = Convergents[l, 110];
     l = FromContinuedFraction[c], a++];
    Print[N[l + f[n], 95]], {n, 0, 20}]

which give the following minuscule results:

455353.49999999999999999999999999999999999922805342537191251034213031344782008177019821150735291

2.9199474026688371803570441462414026209663468193828590616799286250429138833291268819435693003382*10^-15

3.0883808365393805976599772401114132776432990139760009925703183747698139661120893356138812636393*10^-36

3.0899412769474228771522360310260164263518211126255365150613157020729793140135461753747853530079*10^-57

3.0899345724509652998138261484536342957238257605233238454711468532965115376145139371649735930125*10^-78

3.0899322736925121154875800561960032313237692698561201626448050392553755207902175257300035940193*10^-99

3.0899320275337251237145063579917678945367126519803736558951266036718173248409899610281152646934*10^-120

3.0899320027550172512397144082357990376848798700608203940718841807568050176487965173555734741126*10^-141

3.0899320002755181725123997143984235799023768547332033956375913675336560958207506367451033410558*10^-162

3.0899320000275519817251239997143974423579902237685532665367291193146563568180419131049229764317*10^-183

3.0899320000027551998172512399997143973442357990222376855385998700624674870208317163285667526111*10^-204

3.0899320000002755199981725123999997143973344235799022223768553919332033958023042576351319781005*10^-225

3.0899320000000275519999817251239999997143973334423579902222237685539252665367291357859813190328*10^-246

3.0899320000000027551999998172512399999997143973333442357990222222376855392585998700624691341537*10^-267

3.0899320000000002755199999981725123999999997143973333344235799022222223768553925919332033958025*10^-288

3.0899320000000000275519999999817251239999999997143973333334423579902222222237685539259252665367*10^-309

3.0899320000000000027551999999998172512399999999997143973333333442357990222222222376855392592586*10^-330

3.0899320000000000002755199999999981725123999999999997143973333333344235799022222222223768553926*10^-351

3.0899320000000000000275519999999999817251239999999999997143973333333334423579902222222222237686*10^-372

3.0899320000000000000027551999999999998172512399999999999997143973333333333442357990222222222222*10^-393

3.0899320000000000000002755199999999999981725123999999999999997143973333333333344235799022222222*10^-414

There are also patterns in the final continued fractions of cc( n sub x), as described at https://oeis.org/wiki/Tableofconvergents_constants .

POSTED BY: Marvin Ray Burns

There are short runs of repeating digits in many, if not all, other bases like shown if the following examples.

Table[x = 11^n;
 l = x + Rationalize[RandomReal[WorkingPrecision -> 200]];
 For[a = 1, a < 80, c = Convergents[l, 110];
  l = FromContinuedFraction[c], a++];
 Print[BaseForm[N[l, 100], 11]], {n, 0, 10}]

gives

Subscript[1.555555555555555555555555555555555533700a2550688908575490a69364603964429224586627a93a3402a20a768, 11]

Subscript[10.0a9058978520259a142827a922a92569656863a36698a4338868409471057a972647425325419330582897044190a86, 11]

Subscript[100.00aaa90005aa88a9a0146210501696393768358512440139357a352a10a544892343a8259a40799127313463772096, 11]

Subscript[1000.000aaaaa9000005aaaa88aa90a00186629a204660340816aa4034a8a64332475161211097a661662a93a4a2685a02, 11]

Subscript[10000.0000aaaaaaa900000005aaaaaa88aaa900a00018a662a9a020460612040a81231a293588695452177a88a9172284, 11]

Subscript[100000.00000aaaaaaaaa90000000005aaaaaaaa88aaaa9000a000018aa662aa9a00204600612a040aa811951a28136015, 11]

Subscript[1.000000000000aaaaaaaaaaa9000000000005aaaaaaaaaa88aaaaa90000a0000018aaa662aaa9a0002046000612aa0410, 11]*11^(6)

Subscript[1.00000000000000aaaaaaaaaaaaa900000000000005aaaaaaaaaaaa88aaaaaa900000a00000018aaaa662aaaa9a000020, 11]*11^(7)

Subscript[1.0000000000000000aaaaaaaaaaaaaaa90000000000000005aaaaaaaaaaaaaa88aaaaaaa9000000a000000018aaaaa663, 11]*11^(8)

Subscript[1.000000000000000000aaaaaaaaaaaaaaaaa9000000000000000005aaaaaaaaaaaaaaaa88aaaaaaaa90000000a0000000, 11]*11^(9)

Subscript[1.00000000000000000000aaaaaaaaaaaaaaaaaaa900000000000000000005aaaaaaaaaaaaaaaaaa88aaaaaaaaa9000000, 11]*11^(10)

And

Table[x = 10^n;
 l = x + Rationalize[RandomReal[WorkingPrecision -> 200]];
 For[a = 1, a < 80, c = Convergents[l, 110];
  l = FromContinuedFraction[c], a++];
 Print[N[l, 100]], {n, 0, 10}]

gives

1.499999999999999999999999999999999999228053425371912510342130313447820081770198211507352907346219401

10.09805770662442796602740266883718035704414624140262096634681938285906167992862504291388332912688194

100.0099980005997601119434299835649973755091808365393805976599772401114132776432990139760009925703184

1000.000999998000005999976000111999434002999983556068423745679297941276947422877152236031026016426352

10000.00009999999800000005999999760000011199999434000029999998355599852424022296796516993457245096530

100000.0000099999999980000000005999999997600000001119999999434000000299999999835559997692424002706968

1.000000000000999999999998000000000005999999999976000000000111999999999434000000002999999999983556000*10^6

1.0000000000000099999999999998000000000000059999999999997600000000000111999999999994340000000000300000*10^7

1.0000000000000000999999999999999800000000000000059999999999999976000000000000011199999999999994340000*10^8

1.0000000000000000009999999999999999980000000000000000059999999999999999760000000000000001120000000000*10^9

1.0000000000000000000099999999999999999998000000000000000000059999999999999999997600000000000000000112*10^10

And

Table[x = 9^n;
 l = x + Rationalize[RandomReal[WorkingPrecision -> 200]];
 For[a = 1, a < 80, c = Convergents[l, 110];
  l = FromContinuedFraction[c], a++];
 Print[BaseForm[N[l, 100], 9]], {n, 0, 10}]

gives

Subscript[1.44444444444444444444444444444444444443073531882470086460233170312543468268784541455068201865618482513564, 9]

Subscript[10.0870564067366372663207648504632136088141106250228645515456237158105552460770327173468732711403618222108, 9]

Subscript[100.008887000588628832143270508682016054717823841110832851328460854107347124788711825234207688430331030438, 9]

Subscript[1000.00088888700000588886288713202123373664388052576487370184004252631020602411405156567187226134277084477, 9]

Subscript[10000.0000888888870000000588888862888701320021823387333643100875313652484784246074414317476421476832164160, 9]

Subscript[100000.000008888888887000000000588888888628888700132000218823388733036430101167531836412484528486860883365, 9]

Subscript[1.00000000000088888888888700000000000588888888886288888700013200002188823388873300364300101186753188364013, 9]*9^(6)

Subscript[1.00000000000000888888888888870000000000000588888888888862888888700001320000021888823388887330003643000101, 9]*9^(7)

Subscript[1.00000000000000008888888888888887000000000000000588888888888888628888888700000132000000218888823388888733, 9]*9^(8)

Subscript[1.00000000000000000088888888888888888700000000000000000588888888888888886288888888700000013200000002200000, 9]*9^(9)

Subscript[1.00000000000000000000888888888888888888870000000000000000000588888888888888888862888888888700000001320000, 9]*9^(10)
POSTED BY: Marvin Ray Burns
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract