I need the solution steps for this integral as soon as possible. Please this is an emergency!
PROBLEM: integrate e^(7ix)*((e^(2ix)+e^(-2ix))/2) dx
More specifically, can you send me the steps integrating the function using complex integrals i.e. cos(2x) = [e^(2ix) + e^(-2ix)]/2 i.e. sin(2x)= [e^(2ix) - e^(-2ix)]/2i
Make sure you using the right Mathematica syntax:Integrate[E^(7 I x). . . , Sin[2x], etc.
Here's the code that appears to work:
In[11]:= Integrate[E^(7 I x)*((E^(2 I x) + E^(-2 I x))/2), x] Out[11]= -(1/90) I E^(5 I x) (9 + 5 E^(4 I x))