I am in the beginning stages of my project of modeling earth-moon-satellite system.I was able to plot my solution but now i want to animate it, I have never used animate and I am confused on making this animation. Can someone show me how i would go about doing this? I wanna make a slider bar from time 0 to 50.
G = 6.67*10^-11;
Subscript[m, e] = 5.97*10^24;
Subscript[m, m] = 7.35*10^22;
r = 385000000;
Subscript[d, 1] =
Subscript[m, m]/(Subscript[m, m] - Subscript[m, e])*r;
Subscript[d, 2] = r + Subscript[d, 1];
Subscript[m, 1] = Subscript[m, e]/(
Subscript[m, e] + Subscript[m, m]);
Subscript[m, 2] = Subscript[m, m]/(
Subscript[m, e] + Subscript[m, m]);
d1 = Subscript[m, 2];
d2 = Subscript[m, 1];
Subscript[r, e] = 6371000;
Subscript[r, m] = 1737000;
I have solved the differential equation already.
s7 = NDSolve[{x''[
t] == -(Subscript[m,
1]/((x[t] + d1*Cos[t])^2 + (y[t] + d1*Sin[t])^2)^(3/
2) (x[t] + d1*Cos[t]) +
Subscript[m, 2]/((x[t] - d2*Cos[t])^2 + (y[t] - d2*Sin[t])^2)^(
3/2) (x[t] - d2*Cos[t])),
y''[t] == -((
Subscript[m,
1] (y[t] +
d1*Sin[t]))/((x[t] + d1*Cos[t])^2 + (y[t] + d1*Sin[t])^2)^(
3/2) + (Subscript[m,
2] (y[t] -
d2*Sin[t]))/((x[t] - d2*Cos[t])^2 + (y[t] - d2*Sin[t])^2)^(
3/2)), x'[0] == 0, y'[0] == 1.3, x[0] == .8, y[0] == 0}, {x,
y}, {t, 50}]
I was able to get this plot to show. How can it be animated.
Show[{Graphics[{Green,
Disk[{-d1*Cos[0], -d1*Sin[0]}, 3 Subscript[r, e]/r], Gray,
Disk[{d2*Cos[0], d2*Sin[0]}, 3 Subscript[r, m]/r]}],
ParametricPlot[Evaluate[{x[t], y[t]} /. s7], {t, 0, 50},
PlotStyle -> Red],
ParametricPlot[Evaluate[{x[t], y[t]} /. s7], {t, 45.9, 46.1},
PlotStyle -> Black]}, PlotRange -> {{-2, 2}, {-2, 2}},
Axes -> True,
AxesLabel -> {"\!\(\*FractionBox[\(x\), \(R\)]\)",
"\!\(\*FractionBox[\(y\), \(R\)]\)"}]