UPDATE: I have gotten this far using a model of the Telegraph equation, but below it I will post the errors I am getting. Any suggestions?
ic1 = u[0, x] == 0
ic2 = D[u[t, x], {t, 1}] ==
Piecewise[{{1, 1 < x < 2}, {0, x <= 1}, {0, x >= 2}}]
pde1 = NDSolveValue[{D[u[t, x], {t, 2}] ==
D[u[t, x], {x, 2}, ic1, ic2],
DirichletCondition[u[t, x] == f[-10], x == -10],
DirichletCondition[u[t, x] == f[10], x == 10]},
u, {t, -10, 10}, {x, 0, 2}]
framesTEQ =
Table[Plot[pde1[t, x], {x, -10, 10}, PlotRange -> {-1, 1.3}], {t,
0, .25, 0.5, .75, 1, 1.25}];
Manipulate[framesTEQ[[i]], {{i, 3, "time"}, 1, Length[framesTEQ], 1},
SaveDefinitions -> True]
ERRORS:
General::ivar: u[0,x]==0 is not a valid variable. >>
NDSolveValue::bcedge: Boundary condition u[t,10]==f[10] is not specified on a single edge of the boundary of the computational domain. >>