about the equation solve, this simple complex equation can be solve with Solve, while the domains of a and b must be added.
In[152]:= Solve[{a + b I - 2 + 3 I == 0.0 + 0.0 I, -100 < a <
100, -100 < b < 100}, {a, b}]
\:6B63\:5728\:8BA1\:7B97In[152]:= Solve::ratnz: Solve ??????????????. ???????????????????????????. >>
Out[152]= {{a -> 2., b -> -3.}}
but if the equation is not an simple one, like follows equal to zero, how can I use solve to get the solution?
{-(((0.0545683 -
0.00208937 I) E^((0. -
1.*10^-7 I) Sqrt[(-3.88435*10^12 +
1.29283*10^11 I) + (1.58739 - 0.0532404 I) (k1 +
I k2)^2]) (0. - (4.36692 - 0.145345 I) Sqrt[
8.89495*10^11 - 1. (k1 + I k2)^2] +
1. Sqrt[(-3.88435*10^12 +
1.29283*10^11 I) + (1.58739 - 0.0532404 I) (k1 +
I k2)^2]) ((-4.36692 +
0.145345 I) Sqrt[(9.29602*10^11 + 6.66186*10^10 I) - (k1 +
I k2)^2] + (2735/2617 + (196 I)/
2617) Sqrt[(-3.88435*10^12 +
1.29283*10^11 I) + (1.58739 - 0.0532404 I) (k1 +
I k2)^2]))/(Sqrt[8.89495*10^11 - 1. (k1 + I k2)^2]
Sqrt[(-3.88435*10^12 +
1.29283*10^11 I) + (1.58739 - 0.0532404 I) (k1 +
I k2)^2])) - ((0.0545683 -
0.00208937 I) E^((0. +
1.*10^-7 I) Sqrt[(-3.88435*10^12 +
1.29283*10^11 I) + (1.58739 - 0.0532404 I) (k1 +
I k2)^2]) (0. - (4.36692 - 0.145345 I) Sqrt[
8.89495*10^11 - 1. (k1 + I k2)^2] -
1. Sqrt[(-3.88435*10^12 +
1.29283*10^11 I) + (1.58739 - 0.0532404 I) (k1 +
I k2)^2]) ((4.36692 -
0.145345 I) Sqrt[(9.29602*10^11 + 6.66186*10^10 I) - (k1 +
I k2)^2] + (2735/2617 + (196 I)/
2617) Sqrt[(-3.88435*10^12 +
1.29283*10^11 I) + (1.58739 - 0.0532404 I) (k1 +
I k2)^2]))/(Sqrt[8.89495*10^11 - 1. (k1 + I k2)^2]
Sqrt[(-3.88435*10^12 +
1.29283*10^11 I) + (1.58739 - 0.0532404 I) (k1 + I k2)^2])}
i also want to solve a11==0 the values of k1 and k2, k1 and k2 are real. how to do it?is there any other way to solve this?