Following Bianca's ideas of planes I made another implementation (very similar, but works with Polygons), and you can play with opacity and which plane to show. This will direct you how to proceed
yehuda
Manipulate[
Module[{xticks, yticks, zticks, xends, yends, zends, xplanes,
yplanes, zplanes}, xticks = yticks = zticks = Range[-1, 1, 0.5];
xends = yends = zends = {-1, 1};
xplanes =
Apply[Polygon[Join[#, Reverse[#2]]] &,
Outer[{#3, #1, #2} &, yticks, zends, xends], 1];
yplanes =
Apply[Polygon[Join[#, Reverse[#2]]] &,
Outer[{#2, #3, #1} &, zticks, xends, yends], 1];
zplanes =
Apply[Polygon[Join[#, Reverse[#2]]] &,
Outer[{##} &, xticks, yends, zends], 1];
Show[ParametricPlot3D[{{x, Im[I^(5 x)], Re[I^(5 x)]}}, {x, -1, 1},
AxesLabel -> {"Real x", "Imaginary y", "Real y"},
PlotRange -> All, PlotStyle -> {Thick, Red}],
Graphics3D[
Flatten[{Opacity[opacity], Gray,
If[#[[1]], #[[2]], {}] & /@
Thread[{{xp, yp, zp}, {xplanes, yplanes, zplanes}}]
}]]]], {{opacity, 0.1}, 0,
0.5}, {xp, {True, False}}, {yp, {True, False}}, {zp, {True,
False}}]