# [GIF] Stay Connected (Rhombus tiling deformation)

Posted 3 years ago
3771 Views
|
|
5 Total Likes
|
 Stay ConnetedI just got an invite to Dribbble and, as I was picking a few recent GIFs to upload, I looked again at Reinvention and immediately wanted to make a combination of that and of Obfuscate. Not sure I entirely succeeded, but this is the result.Here's the code: rhombus[{x_, y_}, ϕ_, θ_] := Polygon[{x, y} + # & /@ Prepend[{#[[1]], #[[1]] + #[[2]], #[[2]]}, {0, 0}] &[{{Cos[θ], Sin[θ]}, {Cos[θ + ϕ], Sin[θ + ϕ]}}]]; basicblock[{x_, y_}, ϕ_, t_, n_] := Table[{rhombus[{x, y}, ϕ, θ + t], rhombus[{x + Cos[θ + t] + Cos[θ + t + ϕ], y + Sin[θ + t] + Sin[θ + t + ϕ]}, ϕ, θ + 2 π/3]}, {θ, 0, 2 π - 2 π/n, 2 π/n}] DynamicModule[{cols}, cols = {RGBColor[ 0.7254901960784313, 0.9137254901960784, 0.21568627450980393], RGBColor[ 0.11372549019607843, 0.16862745098039217, 0.3254901960784314]}; Manipulate[ Graphics[{FaceForm[None], EdgeForm[ Directive[cols[[1]], JoinForm["Round"], Thickness[.00375]]], Table[basicblock[{3 x + 3/4 (-1)^y , 3 Sqrt[3]/2 y}, 2 π/3 Haversine[t] - π/3, 0, 6][[;; ;; 2]], {x, -3, 3}, {y, -3, 3}]}, PlotRange -> {{-15/2 + 3/4, 15/2 + 3/4}, {-7/2 Sqrt[3], 4 Sqrt[3]}}, ImageSize -> 540, Background -> cols[[2]]], {t, 0, π}] ] `