Recapitulation
Inspired by a talk Frank Farris gave at the ICERM Workshop on Illustrating Mathematics (see also @symmetric_curve); the idea is that a Fourier series whose only non-vanishing coefficients are congruent to 1 mod $n$ will produce a parametrized curve having $n$-fold symmetry.
In this case, $n=5$; here's the code:
ToReal[z_] := {Re[z], Im[z]};
DynamicModule[{a = -1/4, b = -3/4, c = 1/3, d = 1/3, cols},
cols = RGBColor /@ {"#8BDEFF", "#A888FF", "#C2FFFF", "#26466F"};
Manipulate[
ParametricPlot[
ToReal[E^(-I ?/10)*(a E^(-4 I ?) + b E^(6 I ?) +
c Sin[t] E^(-9 I ?)) +
d Cos[t] E^(11 I ?)], {?, 0, 2 ?},
PlotRange -> 2.5, Axes -> None, ImageSize -> 540,
PlotStyle -> Thickness[.005],
ColorFunction ->
Function[{x, y, ?},
Blend[Append[#, First[#]] &[cols[[;; 3]]],
Mod[(? + ?/2 + t)/(2 ?), 1]]],
ColorFunctionScaling -> False,
Background -> Last[cols]], {t, -?/2, ?/2}]
]