Group Abstract Group Abstract

Message Boards Message Boards

0
|
5.9K Views
|
0 Replies
|
0 Total Likes
View groups...
Share
Share this post:

Convenient approximations of Re[D[(-1)^n*n^(1/n), n]]

Wolfram Alpha gave me several machine sized approximations of Re[D[(-1)^n*n^(1/n), n]], at a sequence of points, using named constants and 5 or less coefficients of three of less digits.:

  Initialization 

  m = NSum[(-1)^n (n^(1/n) - 1), {n, 1, Infinity}, 
    WorkingPrecision -> 
     17](*A037077 Decimal expansion of upper limit \
  of-1^(1/1)+2^(1/2)-3^(1/3)+.... (the MRB constant.*)

  0.18785964246207

  l = N[8/(3 Sqrt[3]), 
    15] (*LA118273 Decimal expansion of (4/3)^(3/2).Lieb's square ice constant*)

  1.53960071783900

  p = N[Root[#^6 - #^5 - #^4 - #^3 - #^2 - # - 1 &, 2], 
    15] (*A118427 Decimal expansion of hexanacci constant.*)

  1.98358284342433

  h9 = 0.7859336743503714545 (* oeis.org/A117239 Decimal expansion of solution \
  to problem #9 in the Trefethen challenge.*)

  0.785933674350371455

  t = .273944195739271617171 (*A091694 Trott's second constant:decimal \
  expansion is same as terms in its non-simple continued fraction read serially*)

  0.27394419573927161717

  g = N[ Integrate[Sin[x]/x, {x, 0, \[Pi]}], 
    20] (*A036792 Wilbraham-Gibbs Constant*)

  1.8519370519824661704

  f = x /. FindRoot[x^(1/x) - (x + 1)^(1/(x + 1)) == 0, {x, 2}, 
     WorkingPrecision -> 20](* A085846
    Decimal expansion of root of x=(1+1/x)^x. Foias' "2nd" Constant*)

  2.2931662874118610315

  c = N[1 - 2 Sin[Pi/18], 
    15](* A178959 Decimal expansion of the site percolation threshold for the \
  (3,6,3,6) Kagome Archimedean lattice. Bond Percolation on Honeycomb Lattice*)

  0.652703644666139

  w = N[Gamma[1/3]^3/(4*Pi), 
    17] (*A064582 Real half-period for the Weierstrass elliptic function with \
  invariants g2=0,g3=1.  Weierstrass constant*)

  1.5299540370571929

  a = 2.50290787509589282228 (*A006891 Decimal expansion of Feigenbaum \
  reduction parameter.*)

  2.5029078750958928223

  ff = N[(1/2^(1/3))*(-1)^(1/24)*GoldenRatio^(1/12)*
         EllipticThetaPrime[1, 0, -(I/GoldenRatio)]^(1/3), 14]

  1.22674201072035 + 0.*10^-15 I

  no = 0.06535142592303732137 (*A143304
   Decimal expansion of Norton's constant.*)

  0.06535142592303732137

  m2 = N[-Log[16], 16] (*A016639
   Decimal expansion of log(16). Madelung constant b4(2).*)

  -2.772588722239781

  h8 = 0.4240113870336883638 (*A117238
   Decimal expansion of solution to problem #8 in the Trefethen challenge.*)

  0.4240113870336883638

  s = N[2 + 2*Cos[2*Pi/7], 17] (*A116425
   Decimal expansion of 2+2*cos(2*Pi/7). Silver constant.*)

  3.2469796037174671

  sm = N[128/(45*Pi), 17](*A093070
   Decimal expansion of 128/(45*Pi). Mean line-in-disk length*)

  0.90541478736722680

  pe = N[Sqrt[2] InverseErf[1/2], 17] (*A092678
   Decimal expansion of the probable error.*)

  0.67448975019608174

  ct = 0.678234491917391978035 (*A175639
   Decimal expansion of product_{p=prime} (1-3/p^3+2/p^4+1/p^5-1/p^6). \
  Taniguchi's Constant*)

  0.67823449191739197804

  an = 0.107653919226484576615323 (* A072558
   Decimal expansion of One-ninth constant.*)

  0.10765391922648457661532

  cn = 0.6434105462883380261 (*A118227
   Decimal expansion of Cahen's constant.*)

  0.643410546288338026

  tv = N[3/2 Sqrt[3], 15](*A020832
   Decimal expansion of 1/sqrt(75). Twenty-Vertex Entropy Constant*)

  2.59807621135332

  jo = N[BesselJZero[0, 1], 17](*A115368
   Decimal expansion of first zero of the Bessel function J_0(z).*)

  2.4048255576957728

  vc = N[3977/216000 - Pi^2/2160, 17] (*A093524
   Decimal expansion of 3977/216000-Pi^2/2160. Mean cube-in-tetrahedron picking \
  volume.*)

  0.013842775740236408



  Calculation

  {N[Re[D[(-1)^n*n^(1/n), n] - (67 - 360*m)/(10*(9*m - 2)) /. n -> 1/E], 15], 
   N[Re[D[(-1)^n*n^(1/n), n] + Exp[1/E] \[Pi] Sin[E Pi] /. n -> E], 20]}

  N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating Re[I (-1)^E E^(1/E) \[Pi]]+E^(1/E) \[Pi] Sin[E \[Pi]].

  {-9.2*10^-11, 0.*10^-69}

  {N[Re[D[(-1)^n*n^(1/n), n] - 9/(520*l + 279) /. n -> m], 15], 
     N[Re[D[(-1)^n*n^(1/n)*n] + (99 - 94*h8)/(41*h8 - 2) /. n -> 1/m], 15]}

  {7.1*10^-13, 2.93*10^-10}

  {N[Re[D[(-1)^n*n^(1/n), n] + (2*(31*p + 110))/(81*p - 7) /. n -> 1/l], 15], 
     N[Re[D[(-1)^n*n^(1/n), n] - (86*s + 401)/(3*(103*s - 280)) /. n -> l], 15]}

  {-8.4*10^-12, -1.7*10^-13}

  {N[Re[D[(-1)^n*n^(1/n), n]] - (2*(50*h9 + 3))/(3*(91*h9 + 11)) /. n -> p, 15], 
     N[Re[D[(-1)^n*n^(1/n), n]] - (2*(13*ct + 2))/(22*ct - 41) /. n -> 1/p, 15]}

  {1.5*10^-12, 9.0*10^-13}

  {N[Re[D[(-1)^n*n^(1/n), n] + 169/(236*t) - 1/59 /. n -> h9], 15], 
     {N[Re[D[(-1)^n*n^(1/n), n] - (2 + 4*sm - 419/134) /. n -> 1/h9], 15], 
       N[Re[D[(-1)^n*n^(1/n), n] - (2 + (30 - 343*an)/(2*(353*an - 45))) /. 
       n -> 1/h9], 15]}}

  {-3.5044*10^-13, {-2.2479*10^-12, 6.84515*10^-12}}

  {N[Re[D[(-1)^n*n^(1/n), n] - (20*(140*g + 3))/(1041*g - 608) /. n -> 1/t], 
    15], 
     N[Re[D[(-1)^n*n^(1/n), n] - (170*cn + 7)/(2*(2*cn + 373)) /. n -> t], 15]}

  {1.09500*10^-13, -2.2315*10^-15}

  {N[Re[D[(-1)^n*n^(1/n), n] + (10*(7*f + 29))/(208*f - 691) /. n -> g], 15], 
   N[Re[D[(-1)^n*n^(1/n), n] + (969 tv - 547)/(100 (7 tv - 2)) /. n -> 1/g], 
    16]}

  {-6.78824*10^-13, -3.*10^-14}

  {N[Re[D[(-1)^n*n^(1/n), n] + (4*(135*c + 17))/(193*c - 8) /. n -> f], 16], 
   N[Re[D[(-1)^n*n^(1/n), n] + (-200 jo - 27)/(15 (5 jo - 208)) /. n -> 1/ f], 
    18]}

  {-2.6*10^-13, 3.2*10^-16}

  {N[Re[D[(-1)^n*n^(1/n), n] + 228/(773*m - 200) /. n -> 1/c], 16], 
   N[Re[D[(-1)^n*n^(1/n) n] + (-5 c - 3)/(4 (95 c - 72)) /. n -> c] , 16]}

  {-8.*10^-13, -1.61*10^-12}

  {N[Re[D[(-1)^n*n^(1/n), n] - (6 - (376*w)/247) /. n -> 1/m], 17], 
   N[Re[D[(-1)^n*n^(1/n), n] + 1 + (5 (89 pe - 80))/(2 (23 pe + 34)) /. 
      n -> m], 17]}

  {-4.*10^-12, -1.82*10^-12}

  {N[Re[D[(-1)^n*n^(1/n), n] - (10*(667*a + 37))/(3000*a - 3407) /. n -> w], 
    19], N[Re[D[(-1)^n*n^(1/n), n]  + 100 (62 vc - (87 E)/283) /. n -> 1/w], 
    19]}

  {0.*10^-17, 7.684*10^-12}

  {N[Re[D[(-1)^n*n^(1/n), n] - 829/11100 /. n -> 1/a], 13], 
     N[Re[D[(-1)^n*n^(1/n), n] - (2*(7*ff + 45))/(103*ff - 150) /. n -> a], 13]}

  {-5.37550888*10^-11, -1.28*10^-10}

  {N[Re[D[(-1)^n*n^(1/n), n] + (7*(no - 3))/(467*no - 20) /. n -> ff], 13], 
     N[Re[D[(-1)^n*n^(1/n), n] + (43*m2 - 72)/(5*m2 - 62) /. n -> 1/ff], 13]}

  {-2.35*10^-10, 2.7*10^-11}

  {N[Re[D[(-1)^n*n^(1/n), n] /. n -> no], 20], 
   Limit[Re[D[(-1)^n*n^(1/n), n]], n -> 0]}

  {6.3472949791887308*10^-16, 0}

  {N[Re[D[(-1)^n*n^(1/n), n] + 95 + (10*(sm + 2))/(24*sm + 49) /. n -> 1/m2], 
    15], 
     N[Re[D[(-1)^n*n^(1/n), n] + (95*pe)/169 + E/7 /. n -> m2], 15]}

  {5.*10^-11, 5.1*10^-13}
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard