Problem: Integrate over $x$ the following integral
$\int e^{-i\, \text{t1} \omega _{\text{p1}}-i \text{p1} x-i \text{t2} \omega _{\text{p2}}-i \text{p2} x}$
Is the following approach correct?
FourierTransform[(-1/Sqrt[2 \[Pi]]) E^(-I p1 x - I p2 x -
I t1 Subscript[\[Omega], p1] -
I t2 Subscript[\[Omega], p2]), x, (-p1 - p2)]
which yields
-(1/2) E^(-I t1 Subscript[\[Omega], p1] -
I t2 Subscript[\[Omega], p2]) DiracDelta[p1 + p2]
or in LaTeX form
$-\frac{1}{2} \delta (\text{p1}+\text{p2}) e^{-i \text{t1} \omega _{\text{p1}}-i \text{t2} \omega _{\text{p2}}}$