How can I test my model fits well using K-Leave Out Cross Validation say K=2. That means take out first 2 data and fit the model for the rest 10 data to find parameters and use 2 data for finding error and do this 6 times for this case. 
I also asked the question at mathematica.stackexchange.com here
Here is my data and model. I tried something but it does not work properly. Any suggestion? Thanks in advance. 
 
    data={{1.*10^-10,2.58022},{7.,2.66034},{7.33333,3.18999},{7.66667,3.88375},{8.,4.13342},{8.33333,4.21529},{8.66667,4.22846},{9.,4.2579},{9.33333,4.28118},{9.66667,4.28596},{10.,4.29661},{11.,4.31207}};
 data = TakeDrop[data, {#, # + 1}] & /@ Range[1, 12, 2] 
parameters = {\[Gamma], \[Epsilon], k, c, p, is}; 
f[x_] := (E^-k  \[Gamma])/(1 + c/(1 + (x/is)^p) + E^-k) + \[Epsilon] 
Do[model[j] =   Sum[( f@(Last@data[[j]])[[i, 1]] - (Last@data[[j]])[[i, 2]])^2, {i, 1, 10}];
 fit[j] =   NMinimize[{model[j], \[Gamma] > 0 && c > 0 && p > 0 && 
      0 < is <= 11}, parameters] // Chop;
 Thread[{\[Gamma], \[Epsilon], k, c, p, is} =    parameters /. Last@fit[j]];
 err[j] =   Total@Abs[
    f@(First@data[[j]])[[All, 1]] - (First@data[[j]])[[All, 2]]];
 Print[err[j]], {j, 1, 6}]
				
					
				
				
					
					
						
							 Attachments:
							Attachments: