The expression is of the form 1/(y^n). The expression only can blow up when y is close to zero. I solved for y= 0:
NSolve[((t Sin[phi])^2 + r^2 + (t Cos[phi] + Z - z)^2 -
2 r t Sin[phi] Cos[eta]) == 0, {t, z, eta}, Reals]
Which gave me three solutions:
{{t -> ConditionalExpression[-4.71926, C[1] \[Element] Integers],
z -> ConditionalExpression[-2.35963, C[1] \[Element] Integers],
eta -> ConditionalExpression[1. (-3.14159 + 6.28319 C[1]),
C[1] \[Element] Integers]},
{t -> ConditionalExpression[-4.71926, C[1] \[Element] Integers],
z -> ConditionalExpression[-2.35963, C[1] \[Element] Integers],
eta -> ConditionalExpression[1. (3.14159 + 6.28319 C[1]),
C[1] \[Element] Integers]},
{t -> ConditionalExpression[4.71926, C[1] \[Element] Integers],
z -> ConditionalExpression[2.35963, C[1] \[Element] Integers],
eta -> ConditionalExpression[6.28319 C[1],
C[1] \[Element] Integers]}}
Note that all of the solution are outside of your integration range so unless I missed something, your expression is continuous in your region. I also fixed eta and n-> 3 and plotted the expression:
Plot3D[1/((t Sin[phi])^2 + r^2 + (t Cos[phi] + Z - z)^2 -
2 r t Sin[phi] Cos[eta])^n /. eta -> 2 Pi /. n -> 3, {z, 0,
50}, {t, -5/3, 5/3}, PlotRange -> All]
It spikes to .003 and is mostly very small but the area under the curve seems calculable and smooth -- You can try different values and integrate it in a different program to check. Are you sure the original source does not have a slightly different parenthesis or a subtle difference?