If you solve indefine integral:
sol = Integrate[? (? + 2 ?t)/(? + ?t)^2 Exp[-?/?c] Cos[2 ? ? ?]^2,v]
sol2 = sol // Simplify
(* 1/4 (E^(-(?/?c) +
4 I ? ? ?) (?t^2/(? + ?t) + ?c/(-1 \
+ 4 I ? ?c ?)) + (
E^(-? (1/?c +
4 I ? ?)) (I ? ?c + ?t (-I ?t + \
?c (I + 4 ? ?t ?))))/((? + ?t) (-I +
4 ? ?c ?)) + (
2 E^(-(?/?c)) (?c (-? ?c + ?t (-?c + \
?t)) +
E^((? + ?t)/?c) ?t^2 (? + ?t) \
ExpIntegralEi[-((? + ?t)/?c)]))/(?c (? + ?t)) \
+ (E^(?t (1/?c + 4 I ? ?)) ?t^2 (1 +
4 I ? ?c ?) ExpIntegralEi[-((
I (? + ?t) (-I +
4 ? ?c ?))/?c)])/?c + (
E^(?t (1/?c - 4 I ? ?)) ?t^2 (1 -
4 I ? ?c ?) ExpIntegralEi[(
I (? + ?t) (I + 4 ? ?c ?))/?c])/?c)*)
and calculate limits with assumptions:
Limit[sol2, ? -> 0, Assumptions -> {?t, ?c, ?} > 0]
(*Complicated expression*)
The problem is Mathematica can't find this limit in infinity:
Limit[sol2, ? -> Infinity, Assumptions -> {?t, ?c, ?} > 0] = ?
Solution in Maple:
(1/(4 (vc +
16 ?^2 vc^3 ?^2)))(4 vc (vc - vt +
8 ?^2 vc^2 (vc - 2 vt) ?^2) +
E^(vt (1/vc - 4 I ? ?))
vt^2 (1 +
16 ?^2 vc^2 ?^2) (2 E^(4 I ? vt ?)
ExpIntegralE[1, vt/
vc] + (1 - 4 I ? vc ?) ExpIntegralE[1,
vt (1/vc - 4 I ? ?)] +
E^(8 I ? vt ?) (1 + 4 I ? vc ?) ExpIntegralE[1,
vt (1/vc + 4 I ? ?)]))