Group Abstract Group Abstract

Message Boards Message Boards

0
|
2K Views
|
2 Replies
|
2 Total Likes
View groups...
Share
Share this post:

[?] Find the sets of numbers for which these identities hold validly?

Anonymous User
Anonymous User
Posted 8 years ago
POSTED BY: Anonymous User
2 Replies

Reduce[] will do what you want. You can specify the domain as well. For example:

In[5]:= Reduce[n Log[x] == Log[x^n], Reals]

Out[5]= x > 0

In[4]:= Reduce[a^x*b^x == (a*b)^x]

Out[4]= ((a b)^x == 0 && b^x == 0) || (b^x != 0 && 
   a^x == b^-x (a b)^x)
POSTED BY: Neil Singer
Anonymous User
Anonymous User
Posted 8 years ago

Thank you. Trying the documented form of Reduce, with "vars" as the 2nd argument, it leaves these forms unevaluated:

In[2]:= Reduce[(a^x)^y == a^(x*y), {}]

Out[2]= a^(x y) == (a^x)^y

In[3]:= Reduce[Log[x] + Log[y] == Log[x*y], {}]

Out[3]= Log[x] == -Log[y] + Log[x y]

On this query, Reduce, has been running for 10 minutes so far, with no result yet:

Reduce[n*Log[x] == Log[x^n], {}]

So Reduce doesn't seem to be generally useful for this type of problem, in my opinion.

In the case where Reduce did provide an answer,

Out[4]= ((a b)^x == 0 && b^x == 0) || (b^x != 0 && a^x == b^-x (a b)^x)

the more general side of the disjunction is

b^x != 0 && a^x == b^-x (a b)^x

which is equivalent by a simple transformation to

b^x != 0 && a^x*b^x == (a b)^x

I suppose in hindsight, I'm looking for a different form of answer, which would more explicitly tell me the ranges required for the variables to make the identity valid. This answer is less explicit, as its form is so close to the original question.

POSTED BY: Anonymous User
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard