If I run
(*ClearAll["Global`*"]*)
(*ClearAll["Global`*"]
ClearAll[Evaluate[$Context<>"*"]]*)
ClearAll["Global`*"];
energy = 0.027*eV;
eV = 1/27.2113845;
nm = 1/0.052917721092;
a0 = 4.65;
n = 0;
M = 4;
W = a0*(3*M + 1);
e = 1;
h = 1;
v = 0.003*137.036;
kmodC = (energy - e*VC)/(h*v);
kmodRG = (energy - e*VRG)/(h*v);
kmodRB = (energy - e*VRB)/(h*v);
kC = (kmodC^2 - kn^2)^0.5;
kRG = (kmodRG^2 - kn^2)^0.5;
kRB = (kmodRB^2 - kn^2)^0.5;
zC = (kn + I*kC)/((kn^2 + kC^2)^0.5);
zRG = (kn + I*kRG)/((kn^2 + kRG^2)^0.5);
zRB = (kn + I*kRB)/((kn^2 + kRB^2)^0.5);
T22 = ( E^(-2 I a (kC + kRG) +
I b (2 kRG + kRB)) ((zC zRG - 1)^2 E^(
4 I (a - b) kRG) (-1 + zRB zRG)^2 +
2 E^(2 I (a - b) kRG) (-zC (1 + zRG^2) + zRG +
zC^2 zRG)))/((-1 + zRG^2)^2);
T[kn_, a_] = 1/(T22*(T22)\[Conjugate]);
(*Parameters*)
VRG = 0.100*eV;
VRB = 0.001*eV;
VC = 0.001*eV;
b = (a + d);
d = 50*nm;
(*Parameters*)
T22post = (
E^(-2 I a (kC + kRG) +
I b (2 kRG + kRB)) ((zC zRG - 1)^2 E^(
4 I (a - b) kRG) (-1 + zRB zRG)^2 +
2 E^(2 I (a - b) kRG) (-zC (1 + zRG^2) + zRG +
zC^2 zRG)))/((-1 + zRG^2)^2);
Tpost[kn_, a_] = 1/(T22*(T22)\[Conjugate]);
Evaluate[T[kn*(1/nm), (a/2)*nm] === Tpost[kn*(1/nm), (a/2)*nm]]
It turns out that the T and Tpost are not identical as Hans says. The first bits of the functions are a bit different:
T

Post

at the very end the "a" has a different factor.
In principle it is now easy to see what is happening. Just compare
TreeForm[Tpost[kn*(1/nm), (a/2)*nm]]
to
TreeForm[T[kn*(1/nm), (a/2)*nm]]
I agree that the delayed definition would probably be more appropriate.
Best wishes,
Marco