A normal plot of the function seems to be working fine. I'm also pretty certain that there is no infinity or so. 
  (* ::Package:: *)
  gs=1;
  rs=10.000000000000000;
  vte=0.025864186384551461;
  csat=1.0000000000000000*10^-014;
  cktCKTgmin=9.9999999999999998*10^-013;
  hereDIOtBrkdwnV=-0.65509939013317497;
  hereDIOtDepCap=0.50000000000000000;
  modelDIOjunctionPot=1.0000000000000000;
 modelDIOgradingCoeff=0.50000000000000000;
 modelDIOtransitTime=9.9999999999999998*10^-013;
 modelDIOf2=0.35355339059327379;
 hereDIOtF1=0.58578643762690485;
 czero=2.0000000000000000*10^-012;
 modelDIOf3=0.25000000000000000;
 omega=2*Pi*10^6;
 (*
 t0=0;
 h=10^-8;
 *)
 smoothMax[tx_, tm_, ts_]:=tm + Log[1 + Exp[(tx - tm)*ts]]/ts
 
 smoothMin[tx_, tm_, ts_]:=tm - Log[1 + Exp[(tm - tx)*ts]]/ts
 
 glue[tx_, ts_]:=((Exp[tx*ts] - Exp[-tx*ts])/(Exp[tx*ts] + Exp[-tx*ts] + 1)+1)/2
 
 current[VD_]:=(csat*(Exp[VD/vte] - (1)) + cktCKTgmin*VD)
 
 charge1[VD1_]:=(czero*hereDIOtF1 + czero/modelDIOf2*(modelDIOf3*(VD1 - hereDIOtDepCap)+ (modelDIOgradingCoeff/(    modelDIOjunctionPot+ modelDIOjunctionPot))*(VD1*VD1 - hereDIOtDepCap*hereDIOtDepCap)))
 
 charge0[VD0_]:=(modelDIOjunctionPot*czero*(1- Exp[(1 - modelDIOgradingCoeff)*Log[1 - VD0/modelDIOjunctionPot]]) /(1 - modelDIOgradingCoeff))
 
 charge2[x_]:=glue[-(x - hereDIOtDepCap), gs]*charge0[smoothMin[x, hereDIOtDepCap, gs]]+ glue[x - hereDIOtDepCap, gs]*charge1[smoothMax[x, hereDIOtDepCap, gs]]
 
 charge3[current_]:=(modelDIOtransitTime*current)
 
 charge[VD_]:=charge3[current[VD]] + charge2[VD]
 
 chargecurrent[v2_, v2t_]:=(D[charge[v22], v22]/.v22->v2)*v2t
 
 v[t_, omega_]:=Sin[omega*t]/2
 
 rest11[t_, i1_, v2_, v2t_, omega_, current1_, chargecurrent1_, v_]:=(i1 - (v - v2)/rs)^2+((v - v2)/rs - current1 - chargecurrent1)^2
 
 i1[t_, t0_, a1_, b1_, c1_, d1_]:=a1+b1*(t-t0) + c1*(t - t0)^2 + d1*(t - t0)^3
 
 v2[t_, t0_, a3_, b3_, c3_, d3_]:=a3+b3*(t-t0) + c3*(t - t0)^2 + d3*(t - t0)^3
 
 v2t[t_, t0_, a3_, b3_, c3_, d3_]:=D[v2[tt, t0, a3, b3, c3, d3], tt]/.tt->t
 rest22[t_, t0_, a1_, b1_, c1_, d1_, a3_, b3_, c3_, d3_, omega_]:=rest11[
     t, 
     i1[t, t0, a1, b1, c1, d1],
     v2[t, t0, a3, b3, c3, d3],
     v2t[t, t0, a3, b3, c3, d3], 
     omega,
     current[
         v2[t, t0, a3, b3, c3, d3]
     ],
     chargecurrent[v2[t, t0, a3, b3, c3, d3], v2t[t, t0, a3, b3, c3, d3]], 
     v[t, omega]
 ]
 SERIES1[a1_, b1_, c1_, d1_, a3_, b3_, c3_, d3_, t1_, h_]:=Integrate[
     Series[
         rest22[t, t1, a1, b1, c1, d1, a3, b3, c3, d3, omega],
         {t, t1, 8}],
     {t, t1, t1 + h}];
 h=10^-7;
 a1=0;
 b1=0;
 c1=0;
 d1=0;
 a3=0;
 b3=0;
 c3=0;
 d3=0;
 p={};
 
 
 
 (*
 For[t1=0.0, t1 < 10^-5, t1 = t1 + h,
     result=Minimize[
         SERIES1[a1, b11, c1, d1, a3, b31, c3, d3, t1, h/100]/h*100,
         {b11, b31}
     ];
     Print[result];
     b1=Last[result[[2]][[1]]];
     b3=Last[result[[2]][[2]]];
     result=Minimize[
         SERIES1[a1, b1, c11, d1, a3, b3, c31, d3, t1, h/10]/h*10,
         {c11, c31}
     ];
     Print[result];
     c1=Last[result[[2]][[1]]];
     c3=Last[result[[2]][[2]]];
     result=Minimize[
         SERIES1[a1, b1, c1, d11, a3, b3, c3, d31, t1, h]/h,
         {d11, d31}
     ];
    Print[result];
    d1=Last[result[[2]][[1]]];
    d3=Last[result[[2]][[2]]];
(*
    Print["t1=", t1];
    Print[",a1=", a1, ",b1=", b1, ",c1=", c1, ",d1=", d1];
    Print[",a2=", a2, ",b2=", b2, ",c2=", c2, ",d2=", d2];
    Print[",a3=", a3, ",b3=", b3, ",c3=", c3, ",d3=", d3];
    Plot[i1[t, t1, a1, b1, c1, d1], {t, t1, t1+h}];
*)
    If[p!={}, 
    p = Append[p, {a1+b1*(t-t1)+c1*(t-t1)^2+d1*(t-t1)^3, t1<t<t1+h}],
    p = {{a1+b1*(t-t1)+c1*(t-t1)^2+d1*(t-t1)^3, t1<t<t1+h}}];
    Print[p];
    (*Print[Plot[Piecewise[p], {t, 0, t1+h}]];*)
    a1=a1 + b1*h + c1*h^2 + d1*h^3;
    a3=a3 + b3*h + c3*h^2 + d3*h^3;
];
    Plot[Piecewise[p], {t, 0, 10^-5}]
*)
Print["start"];
SERIES2[b11_, b31_]:=SERIES1[a1, b11, c1, d1, a3, b31, c3, d3, 0, h]
Print["start1"];
Plot3D[SERIES2[b11, b31]*10^11, {b11, -0.0001, 0.0001}, {b31, -0.0001, 0.0001}]
(*
Plot[{SERIES2[b11, -0.001], SERIES2[b11, 0], SERIES2[b11, 0.001]}, {b11, -0.001, 0.001}]
*)
Print["start2"];
SERIES2[0, 0]

uncommenting the Plot command gives a useful 2d-plot:

and I think I found a workaround:
Plot3D[SERIES2[b11, b31]*10^11-6.07933, {b11, -0.0001, 0.0001}, {b31, -0.0001, 0.0001}]
[\mcode]
gives a non empty plot. Potentially 6.07933 is interpreted as a magic number?!