Also, can you help me understand why I'm able to evaluate the first code below, but not the second (which has a square thrown in?)
Clear[A, G, T, Y, x];
f = {A[x], G[x], T[x], Y[x]} /. RSolve[{
A[x] == (G[x - 1]/25) - (A[x - 1]/25) + A[x - 1],
A[0] == 35,
G[x] == (T[x - 1]/25) - (G[x - 1]/25) + G[x - 1],
G[0] == 30,
T[x] == (Y[x - 1]/25) - (T[x - 1]/25) + T[x - 1],
T[0] == 20,
Y[x] == (A[x - 1]/25) - (Y[x - 1]/25) + Y[x - 1],
Y[0] == 15},
{A[x], G[x], T[x], Y[x]}, x];
g2 = Plot[f, {x, 0, 100}, PlotRange -> Full]
Here's the second code:
Clear[A, G, T, Y, x];
f = {A[x], G[x], T[x], Y[x]} /. RSolve[{
A[x] == (G[x - 1]/25) - (A[x - 1]/25)^2 + A[x - 1],
A[0] == 35,
G[x] == (T[x - 1]/25) - (G[x - 1]/25)^2 + G[x - 1],
G[0] == 30,
T[x] == (Y[x - 1]/25) - (T[x - 1]/25)^2 + T[x - 1],
T[0] == 20,
Y[x] == (A[x - 1]/25) - (Y[x - 1]/25)^2 + Y[x - 1],
Y[0] == 15},
{A[x], G[x], T[x], Y[x]}, x];
g2 = Plot[f, {x, 0, 100}, PlotRange -> Full]