FWIW, a workaround for the time being seems to be to translate the coordinates away from the y-axis before finding the convex hull:
schatzOloid[\[Delta]_Integer, \[Phi]_?NumericQ, \[Omega]_?NumericQ] :=
Block[{px =
Table[{0, Cos[o], Sin[o]}, {o, 0,
2 \[Pi] - \[Pi]/Mod[\[Delta], 100, 1],
N[\[Pi]/Mod[\[Delta], 100, 1]]}],
m1 = {{Cos[\[Phi]], 0, -Sin[\[Phi]]}, {0, 1, 0}, {Sin[\[Phi]], 0,
Cos[\[Phi]]}},
m2 = {{1, 0, 0}, {0, Cos[\[Omega]], -Sin[\[Omega]]}, {0,
Sin[\[Omega]], Cos[\[Omega]]}}, x},
x = Join[Plus[#, {0, 0, 1}] & /@ (Dot[m1, #] & /@ px),
Dot[m2, #] & /@ (Permute[#, {2, 1, 3}] & /@ px)
];
res = TransformedRegion[ConvexHullMesh[{#1 + .1, ##2} & @@@ x], TranslationTransform[{-.1, 0, 0}]];
BoundaryMeshRegion[res, PlotTheme -> "SmoothShading", Boxed -> True,
Axes -> True, AxesLabel -> {"X", "Y", "Z"}, Ticks -> None]
] /; \[Delta] > 2
schatzOloid[37, 0, 0]
