Group Abstract Group Abstract

Message Boards Message Boards

1
|
4.3K Views
|
3 Replies
|
3 Total Likes
View groups...
Share
Share this post:

Integral of DiracDelta

Hello

Common sense suggest that the following integral

Integrate[DiracDelta[Cos[\[Theta]]] Sin[\[Theta]], {\[Theta], 0, \[Pi]}]

should equal one. But Mathematica returns a 0. ¿Is this correct?

Thank you

Carlos

3 Replies
In[1]:= Integrate[
 DiracDelta[Cos[\[Theta]]] Sin[\[Theta]], {\[Theta], 0, \[Pi]}]

Out[1]= 0

In[2]:= Integrate[
 DiracDelta[Cos[\[Theta]]] Sin[\[Theta]], {\[Theta], -1/10, \[Pi]}]

Out[2]= 1
POSTED BY: Frank Kampas
Integrate[DiracDelta[Cos[\[Theta]]] Sin[\[Theta]], {\[Theta], #, \[Pi]}] & /@ {0, 0.}
(*  Out:   {0,1.}  *}

Strange indeed!

POSTED BY: Henrik Schachner
In[27]:= Integrate[
     DiracDelta[Cos[\[Theta]]] Sin[\[Theta]], {\[Theta], Pi/10, Pi}]

    Out[27]= 1

and

In[37]:= Integrate[
 DiracDelta[Cos[\[Theta]]] Sin[\[Theta]], {\[Theta], -Pi/10, +Pi/2}]

Out[37]= 1 - HeavisideTheta[0]

This integral is rather usual in Physics, for spherical coordinates.

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard