Assuming that p1, p4 > 0, are there any substitutions which could get the integration evaluated analytically?
$Assumptions = {p1 > 0 && p4 > 0}
Integrate[1/((p1 + p4)^2*(1 + p4^2)^2), {p4, -Infinity, Infinity}]
If the expression is split up, only one of the three groups evaluates to an analytic result, but the others won't.
Apart[1/((p1 + p4)^2*(1 + p4^2)^2)]
(* (3*p1^2 - 4*p1*p4 - 1)/((p1^2 + 1)^3*(p4^2 + 1)) + (p1^2 - 2*p1*p4 - 1)/((p1^2 + 1)^2*(p4^2 + 1)^2) +
(4*p1)/((p1^2 + 1)^3*(p1 + p4)) + 1/((p1^2 + 1)^2*(p1 + p4)^2)*)
Integrate[(-1 + p1^2 - 2*p1*p4)/((1 + p1^2)^2*(1 + p4^2)^2), {p4, -Infinity, Infinity}]
(* (\[Pi] (p1^2-1))/(2 (p1^2+1)^2) *)