Message Boards Message Boards

0
|
4223 Views
|
1 Reply
|
1 Total Likes
View groups...
Share
Share this post:

Test this assertion correctly? (A rational approximation to $\pi$?)

Posted 6 years ago

In A Rational Approach to Pi Beukers asserts on the right column of page 377 that the integral, $$I_n=\int_{0}^{\pi/4}d\phi \Big( 4 \sin(\phi) \big(\sin(\phi)-\cos(\phi)\big) \Big)^n,$$
Produces a rational approximation to $\pi$, which tends to quality $Q$ greater than $0.90$ in the limit of $n \rightarrow \infty$.

To test this assertion, you may just find the linear recurrence of A006139, and iterate to high $n$, say 5000,

PiRec = (1 + n) a[n] + 1/2 (-3 - 2 n) a[1 + n] + 1/4 (-2 - n) a[2 + n];
BigData[Rec_, IC_, nMax_] := Transpose[{ 
RecurrenceTable[{Rec == 0, a[0] == 0, a[1] == IC[[1]]},  a, {n, 1, nMax}],
RecurrenceTable[{Rec == 0, a[0] == 1, a[1] == IC[[2]]},  a, {n, 1, nMax}]}]
Divide @@ # & /@ BigData[PiRec, {8, -2}, 6]
BigFrac=Divide@@BigData[PiRec, {8, -2}, 5000][[-1]]

Out[]:={-4, -3, -19/6, -160/51, -1744/555, -644/205}
Out[]:=-(10193278946599391809618766025865486773012532822470417892492906856155\
0356243550526000897194415436492942230881308065754161128453936916062566\
0723646262494131045376882668194073201573523999495655972208742985858831\
8534500246072481134020831567892139376393723888711373722138835645908903\
8817354094377672507923314208649515504526077265734601547358347065976414\
8170941422196729987325477562650831360553920450981294094276040086662628\
7884147009928027098941568410404402212546223607621597509464193795153706\
9266244152828040486344692750223059449055492767659236531494939702803303\
4176527634797899787951030683565934478166637556134366492940432019818991\
7173163695570711310346328338567374919524141039393654098900626961887917\
4995278175162191487909752777987949341199275689058377091335292263754586\
3453494809432168189996676190958237155961086431439267611058996810937155\
0559816780467209065286324439832995449438080970352949906491751984107171\
8976295774701270221551810221510872248304820203733321663397468005320653\
2688840802529429112023903880171079550012043333463549544769076311922256\
3867284058043078895472393235704445459587387755604748803983639397113184\
0245980836146507606833054375024688508584010667370897802041916120005629\
0572206213855484593671059813131984516487968417697618637092584858856357\
4208861669264818888082249953708448380325250609792950517509056274939600\
8726793464789099491569947764921691450301134566438981879922820835933178\
0132817479618003775943145676081789816140336936820817000137309103721431\
6164658641657811849193776156639630225310115222847553019724466206211077\
2003852402573017817104868127190814765919638322201063463788134958562955\
7701714115888833763069706187441915836204326112177095271226479706621619\
7771708986115376521389842035380402330895921088917465810771519802484669\
1671677914738889858147715034643725575833446943271791007903480667640189\
9654770166563948993613721224865355268607119275847732902855142627803337\
4352625780679252333013933493189846638788707173977822871751387810257566\
5618843078214481337598810581447256779890472054127078020379545346704985\
2693285393864568434783703819595275362201775126953849101432249582016224\
3453475655289720413305422609963736463169107315721843603695294879602060\
2827891453037995217969107485676230849764451928673262232217262560091309\
4349070213311443737264467587123494715776398662639943984770498036943819\
3024688217966137352085392457352791229776344860425560787556687803225824\
5492776900501359961485845355161873866498950364473130717880632166429320\
3419893156988882347307169449845507840951582425690249428892283533763910\
0650986424369304476069305511203123129029287251172681223559460277531642\
9255451698101503638558962677021286469360971967106194945828294267040647\
4277750844891582684140510154177980185599052564515147380748756125667873\
6682179159452055470665461660405488755902119043354882225654843515949615\
4955599092397354897892291580939377928554294970739617622905544444972375\
5666149719115485131127722978473346394410468122362333666231205839313190\
9554869241544862239818829348408427143522846608262728581136143910221052\
1523729214914724275312492227587636294425487207812265092308614421841175\
0486875841819141101057493718055826760369381878520564688346874464500589\
1085004439091040119515381935362139264079299369312868867117302740169892\
9602309878815352163343820942210389682091268849045398525123423530029423\
0676531930598212217119109279762236882302069514741202227762229746157659\
7180280194018483793441826463427878113837147273862637765131694550332312\
3896143778247975632439424066104053102604191154373557905681477079878788\
8704920804530128614462387925194504270254368814649805052136801940056515\
8966776439386819354910403139900069422326489088080151288428090142193364\
8110634296802600788821865987762050335905257567456129613933771651751146\
3860100384952964469935087224045398178634453573791864841873014220526287\
3833904038486813097412787703153238778378416611948327901536901009976233\
7630989311508367253719414485246201074359248356112749499384519814235784\
4472268619978638054836742647411023348728045787291156657002220644805091\
4830640974423764957677823644361045819573572520696952935872551463611822\
0224176900642953325812407728844997931879367756965386825007785213469571\
3075185500838098860463066239312885666646616959447545388605740128186492\
8494958664204966643416512680862272090726394299432425813143534346604298\
2632964744532056336009220470675902600410370714005216324947902175572182\
9597381271292085449114425994695911580453217017740278248518752583628717\
3780596965278611098840065496691854522745915543709697141120072221673628\
8201394083060766556131597742390707727108317649851881133875109767615548\
8910164727690883222304755818769747679239973367192467155394637931366084\
9959609679513368049685392818590203027292846667048866007715060180707599\
8344840417945661854173170833358725935737575909018908323262883765743626\
0008250465561839021097500127767294904446996136374671303159035461632/
   3244621461331682077356372914570580062364817759911206323734366164683\
9754272444177122786147444743842552757761818368969343884231173533900306\
8329384657000328753136702766287010810255813742286385006138717717388415\
2551673886633547671610637009702591212882508201995325491691444300438245\
8073241353719769541716320686205727132808880487365174492464828603412442\
5982267339314463843004081911911871131098097979972359434462582555703525\
3778125921290423490381017477873359177353600556167154513019760215128092\
0154780764013934239842867961965274783892516531819398702863383012947646\
2282135693314556733145463195522152449783018710183046273331778121526359\
8289546126820546587813087941607359686506397295109286308998869133815094\
9585348012657911435342582789708210790233296757761900350093623645844897\
3743286562354131099065107297975483664891477729271325654117960785701032\
7397138691728324256734773173580083858517475978633364334498532768168389\
8365531974612514547661626169596417154326302128123220034255791234677102\
6745621984051544403286227620971595709325529142232972369337230928655886\
8062133930356628343371745582391824905209350220618628045087222511983624\
6893054486313889029419310144601234028976753853815106772390099878830618\
1200900470587186958375600852591509497998993130082726424252387863825877\
3412246195624520145308774063341213809404086491005806890529957958505638\
5971290090519890827725797979196043506227098231777248665653374545212426\
3763362728053092485779536231534216029639187766043280981810023946766934\
9230725915329369024213304550540509006284266708487340382917338318299189\
3004936190067017987467634444984174940846294152581130103309875727611078\
7013210130823130076449584934061225521583422960144768141012534678222444\
9601388205656883153929389591974594048378824476617593954052540340721697\
0410840248403940105793333519760622950270458099497739187588496686168409\
6799004559829336043555198033954486001899128705828647141115235923278181\
5860824660823341479610995958123818429373201393845704284110656848323692\
1229354251392348053210297911441635785651900478350712861326718902930901\
2671647770798207885835408642122201044864501170028743978302412414659598\
8074513895702421583895059655410245796456024789525977606096246250995874\
9185085649066494929907626240699536377651359251021686874392437873594678\
8313719968494415852894858854937549647594899162911510027955364682363872\
0062992048201688117212159920614208825620775558350584089922542989207236\
4182505980440459188520953617920811145625748877863755601915820325571283\
4556016631412064635438484285274098220102670870196964483481638855940227\
8894836822205940667992680598974316054525930420930791071067626743227361\
5595907183677077408107773627124840052186078638637149050724545821103471\
4911027540337569977954522657393458832776800219599603450673836237926932\
0513781837287107774519506068801701818864220662061330019675152582056702\
9316713926649131677587534123539360744745881144830758815531293573937331\
7445183029696313964285357285679453439726052269582042284185958946062009\
8678232981090639362787818786390175224104773914804534698509362532775901\
1875649670906546755536536046693825717538673950292006385030388688185271\
1496725413518632007218025969170094537559171290608958191581168329696759\
5904568220025803063226194819442371132087577282053228180315620149458210\
2408223407496343014155665270968363444620290120928130154276335204243756\
2840654394202863903611800638128703983239932467876240820892897579999585\
4734203652543047559586351038270477745696061458930723451998410942073127\
3978914849981804988152519332114907099173650960672023961577192819921296\
8798414325759195628957136010740182906561001748103068278804234416890016\
4722773722616236816305699361023600529834002130031955413985996292110278\
8722092151249139025424877133193127724376404139986738841467596758408093\
0021969606664963962434996013212371622856197169715491262959449938119632\
1511114379069430113742660012436458791664922027766671788037604579165106\
2345525987042310146268511682681407941234175992250795680495977466677464\
4672549788417746259274571575863160136649675327851222647122902297503457\
6470036238331033963619623537840194479324180397956111109416606923361414\
6810975974692946224279512885745404848617837804274216688857341952851335\
2658172685709662240584982177765364063330186975796599231243442244356145\
0652695691705231273741341595503647396242008162871083663458608583898507\
0162362296421187788135441659247978864826083716653058719044818135410265\
6541551788550344395947572762697846364269780267331561038551692893422849\
0365752111018789161075992986843092541895610352177683081974281964259043\
7819493431314222128087017698790855712248138046071240830059112902022858\
6127833915348617963348077427801499104262016750693996038562651325849520\
1971247969900167544161814370993933941603791294052760301977339968721934\
8574710845346216953729546703688230282309182359829455986074267465765850\
8462533777303074318457713307784901098342773205427549601914627415625)

The first problem is that we don't know if Mathematica calculates correctly to this order of magnitude. A check is given by the quality,

$MaxExtraPrecision = 10000;
{Denominator[BigFrac]^.79 N[Pi + BigFrac, 1000] > 1,Denominator[BigFrac]^.8 N[Pi + BigFrac, 1000] > 1}
Out[]:={False,True}

This measurement places $0.79<Q<0.80$, which seems like good news but may also contradict Beukers. Who or what has gone wrong in this situation? Is $n=5000$ not sufficiently far in the limit? Is it a fault of my programming? Of Mathematica? Or have we found a mistake in the original article? Expert opinions welcome.

POSTED BY: Brad Klee

I would avoid floating point exponents like .97 or .8 and do as much of the calculation with exact numbers as possible. If Mathematica is not wrong, Q seems to be .7934:

$MaxExtraPrecision = 10000;
{ Denominator[BigFrac]^(7934/10000) (Pi + BigFrac) > 1,
 Denominator[BigFrac]^(7945/10000) ( Pi + BigFrac) > 1}
POSTED BY: Gianluca Gorni
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract