With the given parameters and initial conditions, r and tet are always zero. 
 In[1]:= c = 100;
 b = 1;
 a = 0.99;
 w = NDSolve[{r'[t] == 
     r[t]*(Cos[tet[t]]^2 + a*Sin[tet[t]]^2) - 
      c*r[t]^2*Sin[tet[t]]*Cos[tet[t]]*(Cos[tet[t]] - a*Sin[tet[t]]) - 
      r[t]^2*(Cos[tet[t]]^3 + a*b*Sin[tet[t]]^3), 
    tet'[t] == (a - 1)*Sin[tet[t]]*Cos[tet[t]] - 
      c*r[t]*Sin[tet[t]]*Cos[tet[t]]*(a*Cos[tet[t]] - Sin[tet[t]]) - 
     r[t]*Sin[tet[t]]*Cos[tet[t]]*(a*b*Sin[tet[t]] - Cos[tet[t]]), r[0] == 0, 
   tet[0] == 0}, {r[t], tet[t]}, {t, 0, 1000}]
Out[4]= {{r[t] -> InterpolatingFunction[][t], tet[t] -> InterpolatingFunction[][t]}}
 
        (* This samples only every 100th point.  All 1001 were zero.  *) 
In[5]:= Table[ Evaluate[{r[t], tet[t]} /. w[[1]]], {t, 0, 1000, 100}]
Out[5]= {{0., 0.}, {0., 0.}, {0., 0.}, {0., 0.}, {0., 0.}, {0., 0.}, {0., 0.}, 
   {0., 0.}, {0., 0.}, {0., 0.}, {0., 0.}}
     (*  r' and  tet'  are zero at the beginning, and it looks like they 
          never get the chance to grow.  *) 
In[6]:= Eliminate[{r'[t] == 
    r[t]*(Cos[tet[t]]^2 + a*Sin[tet[t]]^2) - 
     c*r[t]^2*Sin[tet[t]]*Cos[tet[t]]*(Cos[tet[t]] - a*Sin[tet[t]]) - 
     r[t]^2*(Cos[tet[t]]^3 + a*b*Sin[tet[t]]^3), 
   tet'[t] == (a - 1)*Sin[tet[t]]*Cos[tet[t]] - 
     c*r[t]*Sin[tet[t]]*Cos[tet[t]]*(a*Cos[tet[t]] - Sin[tet[t]]) - 
     r[t]*Sin[tet[t]]*Cos[tet[t]]*(a*b*Sin[tet[t]] - Cos[tet[t]]), r[0] == 0, 
   tet[0] == 0} /. t -> 0, {r, tet}]
Out[6]= r[0] == 0. && tet[0] == 0. && r'[0] == 0. && 
   100. tet'[0] == -1. Cos[tet[0]] Sin[tet[0]]
In[7]:= FullSimplify[%]
Out[7]= r[0] == 0 && tet[0] == 0 && r'[0] == 0 && tet'[0] == 0