Message Boards Message Boards

GROUPS:
Anonymous User

Issues with InverseFourierSequenceTransform?

Anonymous User
Posted 5 months ago
478 Views
|
2 Replies
|
0 Total Likes
|

Yes:

In[331]:= InverseFourierSequenceTransform[1, x, n, 
 FourierParameters -> {a, 1}]

Out[331]= (2 \[Pi])^((1 - a)/2) DiscreteDelta[n]

No:

In[329]:= InverseFourierSequenceTransform[1, x, n, 
 FourierParameters -> {a, 2 Pi}]

Out[329]= 0
POSTED BY: Anonymous User
Answer
2 Replies

And no:

In[1]:= InverseFourierSequenceTransform[1, x, n, FourierParameters -> {a, 1}]
Out[1]= InverseFourierSequenceTransform[1, x, {-0.00913271, 0.0914715}, 
                         FourierParameters -> {{1.95061, 1.19098}, 1}]

and so not yes

In[2]:= InverseFourierSequenceTransform[1, x, n, FourierParameters -> {a, 2 Pi}]
Out[2]= InverseFourierSequenceTransform[1, x, {-0.00913271, 0.0914715}, 
                             FourierParameters -> {{1.95061, 1.19098}, 2 \[Pi]}]

In[3]:= $Version
Out[3]= "10.4.1 for Microsoft Windows (64-bit) (April 11, 2016)"

Do this again with

In[18]:= $Version
Out[18]= "11.3.0 for Microsoft Windows (64-bit) (March 7, 2018)"

telling in ref/InverseFourierSequenceTransform

InverseFourierSequenceTransform is the same as FourierCoefficient:

In[20]:= InverseFourierSequenceTransform[1, x, n, FourierParameters -> {1, 2 Pi}]
Out[20]= 0

In[21]:= FourierCoefficient[1, x, n, FourierParameters -> {1, 2 Pi}]
Out[21]= DiscreteDelta[n]

not really, but at least FourierCoefficient does not crack down under the FourierParameters given.

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract