Anonymous User

# Issues with InverseFourierSequenceTransform?

Anonymous User
Posted 3 years ago
3131 Views
|
2 Replies
|
0 Total Likes
|
 Yes: In[331]:= InverseFourierSequenceTransform[1, x, n, FourierParameters -> {a, 1}] Out[331]= (2 \[Pi])^((1 - a)/2) DiscreteDelta[n] No: In[329]:= InverseFourierSequenceTransform[1, x, n, FourierParameters -> {a, 2 Pi}] Out[329]= 0 
 Do this again with In[18]:= $Version Out[18]= "11.3.0 for Microsoft Windows (64-bit) (March 7, 2018)" telling in ref/InverseFourierSequenceTransform InverseFourierSequenceTransform is the same as FourierCoefficient: In[20]:= InverseFourierSequenceTransform[1, x, n, FourierParameters -> {1, 2 Pi}] Out[20]= 0 In[21]:= FourierCoefficient[1, x, n, FourierParameters -> {1, 2 Pi}] Out[21]= DiscreteDelta[n] not really, but at least FourierCoefficient does not crack down under the FourierParameters given. Answer Posted 3 years ago  And no: In[1]:= InverseFourierSequenceTransform[1, x, n, FourierParameters -> {a, 1}] Out[1]= InverseFourierSequenceTransform[1, x, {-0.00913271, 0.0914715}, FourierParameters -> {{1.95061, 1.19098}, 1}] and so not yes In[2]:= InverseFourierSequenceTransform[1, x, n, FourierParameters -> {a, 2 Pi}] Out[2]= InverseFourierSequenceTransform[1, x, {-0.00913271, 0.0914715}, FourierParameters -> {{1.95061, 1.19098}, 2 \[Pi]}] In[3]:=$Version Out[3]= "10.4.1 for Microsoft Windows (64-bit) (April 11, 2016)"