For general
$a,b,c$ symbolic solver Integrate returns unevaluated, then Mathematica can't solve the problem.
Integrate[Sqrt[a + (b*Sin[x] + c Cos[x])^2], {x, n - Pi, n}, Assumptions -> {a > 0, b > 0, c > 0, n > 0}]
(* Input *)
Mathematica only can compute if
$c = b$:
Integrate[Sqrt[a + (b*Sin[x] + b*Cos[x])^2] // Simplify, {x, n - Pi, n}, Assumptions -> {a > 0, b > 0, n > 0}]
(* Sqrt[a + 2 b^2] (-EllipticE[n - (5 \[Pi])/4, (2 b^2)/(a + 2 b^2)] + EllipticE[n - \[Pi]/4, (2 b^2)/(a + 2 b^2)]) *)
But, we can compute numerically:
f[a_, b_, c_, n_] := NIntegrate[Sqrt[a + (b*Sin[x] + c Cos[x])^2], {x, n - Pi, n}]
a=1; (*Assumed constans*)
b=1;
c=2;
n=10;
f[a,b,c,n]
(* 5.6604 *)