Thanks for your suggestion. It has problems as follows.
(1) The original soln1 gives the following results:
soln1[a_, b_, c_, \[Xi]_, \[Lambda]_, \[Phi]_, rn_] :=
NSolve[\[Rho]^2 +
2 \[Rho] (a Sin[\[Theta]] Cos[\[Phi]] +
b Sin[\[Theta]] Sin[\[Phi]] + c Cos[\[Theta]]) + a^2 + b^2 +
c^2 - rn^2 ==
0 && \[Rho] - \[Lambda] rn Cos[\[Theta] + \[Xi] Cos[\[Phi]]]^2 ==
0, {\[Rho], \[Theta]}];
(*evaluation*)
In[8]:= ss = soln1[.5, .5, .5, .2, .5, .1, 1]
During evaluation of In[8]:= NSolve::ifun: Inverse functions are being used by NSolve, so some solutions may not be found; use Reduce for complete solution information.
Out[8]= {{\[Rho] -> -2.51366 - 3.61652 I, \[Theta] ->
1.8313 - 1.79756 I}, {\[Rho] -> -2.51366 + 3.61652 I, \[Theta] ->
1.8313 + 1.79756 I}, {\[Rho] -> -0.146207 -
0.0312241 I, \[Theta] -> -1.82025 +
0.520643 I}, {\[Rho] -> -0.146207 +
0.0312241 I, \[Theta] -> -1.82025 - 0.520643 I}, {\[Rho] ->
0.152974, \[Theta] -> 0.785684}, {\[Rho] ->
0.311045 - 0.210578 I, \[Theta] ->
2.25043 - 0.388346 I}, {\[Rho] ->
0.311045 + 0.210578 I, \[Theta] ->
2.25043 + 0.388346 I}, {\[Rho] -> 0.417435, \[Theta] -> -0.617471}}
NOTE: The two real solutions are: In[8]:= ss = soln1[.5, .5, .5, .2, .5, .1, 1]
During evaluation of In[8]:= NSolve::ifun: Inverse functions are being used by NSolve, so some solutions may not be found; use Reduce for complete solution information.
Out[8]= {{\[Rho] -> -2.51366 - 3.61652 I, \[Theta] ->
1.8313 - 1.79756 I}, {\[Rho] -> -2.51366 + 3.61652 I, \[Theta] ->
1.8313 + 1.79756 I}, {\[Rho] -> -0.146207 -
0.0312241 I, \[Theta] -> -1.82025 +
0.520643 I}, {\[Rho] -> -0.146207 +
0.0312241 I, \[Theta] -> -1.82025 - 0.520643 I}, {\[Rho] ->
0.152974, \[Theta] -> 0.785684}, {\[Rho] ->
0.311045 - 0.210578 I, \[Theta] ->
2.25043 - 0.388346 I}, {\[Rho] ->
0.311045 + 0.210578 I, \[Theta] ->
2.25043 + 0.388346 I}, {\[Rho] -> 0.417435, \[Theta] -> -0.617471}}
NOTE: The two real solutions are: {[Rho] ->
0.152974, [Theta] -> 0.785684}
{[Rho] -> 0.417435, [Theta] -> -0.617471}
These are the two solution I want.
(2) Using your suggestion (I use soln2 to avoid conflict)
soln2[a_, b_, c_, \[Xi]_, \[Lambda]_, \[Phi]_, rn_] :=
NSolve[\[Rho]^2 +
2 \[Rho] (a Sin[\[Theta]] Cos[\[Phi]] +
b Sin[\[Theta]] Sin[\[Phi]] + c Cos[\[Theta]]) + a^2 + b^2 +
c^2 - rn^2 ==
0 && \[Rho] - \[Lambda] rn Cos[\[Theta] + \[Xi] Cos[\[Phi]]]^2 ==
0, {\[Rho], \[Theta]}, Reals];
EVALUATE]
In[20]:= ss2 = soln2[1/2, 1/2, 1/2, 1/5, 1/2, 1/10, 1]
Out[20]= {{\[Rho] ->
ConditionalExpression[
0.5 Cos[0.199001 + 1. (-0.617471 + 6.28319 C[1])]^2,
C[1] \[Element] Integers], \[Theta] ->
ConditionalExpression[1. (-0.617471 + 6.28319 C[1]),
C[1] \[Element] Integers]}, {\[Rho] ->
ConditionalExpression[
0.5 Cos[0.199001 + 1. (0.785684 + 6.28319 C[1])]^2,
C[1] \[Element] Integers], \[Theta] ->
ConditionalExpression[1. (0.785684 + 6.28319 C[1]),
C[1] \[Element] Integers]}}
Please note: The two real solutions: {\[Rho] ->
0.152974, \[Theta] -> 0.785684}
{\[Rho] -> 0.417435, \[Theta] -> -0.617471}
are no where to be found. Can you illuminate me on this issue? Thank you.