PiecewiseExpand[\[Alpha]*
Integrate[1/(
B - 1), {x, Min[Max[(p2 - (p1 - H))/H, 1], B],
B}] + (1 + \[Alpha])*
Integrate[1/(B - 1), {x, Min[Max[(p2 - (p1 - L))/L, 1], B], B}],
p1 - p2 < 0 && H > L > 0 && 0 < \[Alpha] < 1 && g >= B > 1,
Method -> {"ValueSimplifier" -> Simplify,
"ExpandSpecialPiecewise" -> {If, UnitStep}}]
(* (\[Alpha] (B - Min[B, (H - p1 + p2)/H]))/(-1 + B) + ((1 + \[Alpha]) (B - Min[B, (L - p1 + p2)/L]))/(-1 + B)*)
$$\frac{\alpha \left(B-\min \left(B,\frac{H-\text{p1}+\text{p2}}{H}\right)\right)}{B-1}+\frac{(\alpha +1) \left(B-\min
\left(B,\frac{L-\text{p1}+\text{p2}}{L}\right)\right)}{B-1}$$