Group Abstract Group Abstract

Message Boards Message Boards

0
|
6.5K Views
|
1 Reply
|
1 Total Like
View groups...
Share
Share this post:

Using partial fraction decomposition to find inverse Fourier transform

Posted 7 years ago
POSTED BY: Ryan Rizzo

With Mathematica I have:

 f[w_] := 1/((1 - E^(-I w)/3)*(1 - E^(-I w)/4));
 InverseFourierSequenceTransform[f[w], w, n]
 (* Piecewise[{{4/3^n - 3/4^n, n >= 0}}, 0] *)

 g[w] = f[w] // Apart
 (*1 + 4/(-1 + 3 E^(I w)) - 3/(-1 + 4 E^(I w))  *)

 InverseFourierSequenceTransform[g[w], w, n]
 (* Piecewise[{{4/3^n - 3/4^n, n >= 0}}, 0] *)

Results are the same. You can check this code in here.(Only you must sign in)

POSTED BY: Mariusz Iwaniuk
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard