# Obtain a numerical solution and Plot this equation?

Posted 7 months ago
1275 Views
|
13 Replies
|
4 Total Likes
|
 I found equations of motion for my generalized coordinates which are "Phi" and "l" , but I can not get numeric solutions and plots for them.Could you help me please? z1 = (-R*W*Sin[\[Theta]] + l'[t]*Sin[\[Phi][t]] + l*\[Phi]'[t]*Cos[\[Phi][t]] - R*W*Cos[\[Theta]] + l'[t]*Cos[\[Phi][t]] - l*\[Phi]'[t]*Sin[\[Phi][t]]); z1^2 // Expand // TrigReduce; V = -m*g*(-R*Sin[\[Theta]] + l[t]*Cos[\[Phi][t]]) + 1/2*k*(l[t] - l0)^2; T = 1/2*m*z1^2 // Expand // TrigReduce; Lagrange = T - V; eqs = D[D[Lagrange, \[Phi]'[t]], t] - D[Lagrange, \[Phi]] // Expand // TrigReduce; eqs2 = D[D[Lagrange, l'[t]], t] - D[Lagrange, l] // Expand // TrigReduce 
13 Replies
Sort By:
Posted 7 months ago
 1st you should write Cos and Sin instead of cos and sin and try again.
Posted 7 months ago
 I edited my question.Thank you moderator.
Posted 7 months ago
 Welcome to Wolfram Community! Please make sure you know the rules: https://wolfr.am/READ-1STThe rules explain how to format your code properly. If you do not format code, it may become corrupted and useless to other members. Please EDIT your post and make sure code blocks start on a new paragraph and look framed and colored like this. int = Integrate[1/(x^3 - 1), x]; Map[Framed, int, Infinity] 
Posted 7 months ago
 Explain the origin of the model, what does it describe?
Posted 7 months ago
 Rotating Disc With Spring Pendulum;We need to find equations of motion for a disc with spring pendulum. The disc is massless , but it rotates with "w" constant angular speed.Spring pendulum is attached to the disc and spring pendulum move with the disc.Spring pendulum has a "m" mass ,and spring pendulum is free to springing. The discs move is dependent to time , so we have rheonomic constraint.The discs radius is "R" and , we describe its motion with Theta = wt ,but Theta is not degree of freedom. In this case , we have two degrees of freedom for this system , and these are Phi (Spring pendulums rotation angle.) , l (Springs extension quantity.) z1=Derivative of my position vector.
Posted 7 months ago
 Seems that there is something severely wrong z1 = (-R*W*Sin[\[Theta]] + l'[t]*Sin[\[Phi][t]] + l[t]*\[Phi]'[t]*Cos[\[Phi][t]] - R*W*Cos[\[Theta]] + l'[t]*Cos[\[Phi][t]] - l[t]*\[Phi]'[t]*Sin[\[Phi][t]]) /. l -> L; z1^2 // Expand // TrigReduce; V = -m*g*(-R*Sin[\[Theta]] + l[t]*Cos[\[Phi][t]]) + 1/2*k*(l[t] - l0)^2 /. l -> L; T = 1/2*m*z1^2 // Expand // TrigReduce; Lagrange = T - V Needs["VariationalMethods"] eqs = EulerEquations[Lagrange, {L[t], \[Phi][t]}, t] In[171]:= werte = {k -> .2, l0 -> 2, m -> .6, g -> 9.81}; eqsnum = eqs /. werte; lsg = NDSolve[({eqs, \[Phi][0] == 0, \[Phi]'[0] == .9, L[0] == l0, L'[0] == .2} /. werte), {\[Phi], L}, {t, 0, 10}] During evaluation of In[171]:= NDSolve::ntdvdae: Cannot solve to find an explicit formula for the derivatives. NDSolve will try solving the system as differential-algebraic equations. >> During evaluation of In[171]:= NDSolve::icfail: Unable to find initial conditions that satisfy the residual function within specified tolerances. Try giving initial conditions for both values and derivatives of the functions. >> Out[173]= {} 
Posted 7 months ago
 And indeed:NDsolve at the beginning has to find out the value of l''[0] and phi''[0].But with eqs as defined above have a look at eqsneu = eqs /. t -> 0 /. {L[0] -> l0, L'[0] -> Lp, L''[0] -> Lpp, \[Phi]'[0] -> fp, \[Phi]''[0] -> fpp} and In[23]:= Collect[eqsneu[[2]] /. Solve[eqsneu[[1]], Lpp][[1, 1]], fpp] // FullSimplify Out[23]= (g l0 m)/(Cos[\[Phi][0]] + Sin[\[Phi][0]]) == 0 showing that it is impossible to find a vlaue for phi''[0].Are you sure that your T and V is correct?
Posted 7 months ago
 Yes , because T is my kinetic energy that is 1/2mr^2 and V is my potential energy that I find it my question.
Posted 7 months ago
 Can we find it with Runge-Kutta method? I reduced them in to first order differential equations like that; sol1 = EulerEquations[Lagrange, \[Phi][t], t] sol2 = EulerEquations[Lagrange, l[t], t] sol5 = \[Phi]''[t] = x'[t]; sol6 = l''[t] = y'[t]; sol3 = Solve[sol1, \[Phi]''[t]] sol4 = Solve[sol2, l''[t]] Now I have two first order equations that are ; {Derivative[1][x][t] -> ( g Sin[\[Phi][t]] + Cos[2 \[Phi][t]] Derivative[1][y][t] + 2 Derivative[1][l][t] Derivative[1][\[Phi]][t] - 2 Sin[2 \[Phi][t]] Derivative[1][l][t] Derivative[1][\[Phi]][t] - Cos[2 \[Phi][t]] l[t] Derivative[1][\[Phi]][t]^2)/( l[t] (-1 + Sin[2 \[Phi][t]])) Derivative[1][y][t] -> ( k l0 + g m Cos[\[Phi][t]] - k l[t] - m Cos[2 \[Phi][t]] l[t] Derivative[1][x][t] - 2 m Cos[2 \[Phi][t]] Derivative[1][l][t] Derivative[1][\[Phi]][t] + m l[t] Derivative[1][\[Phi]][t]^2 + m l[t] Sin[2 \[Phi][t]] Derivative[1][\[Phi]][t]^2)/( m (1 + Sin[2 \[Phi][t]])) 
Posted 7 months ago
 It should be noted that z1 is a vector {z1[[1]],z1[[2]]}. The signs of the remaining expressions can be clarified. z1 = {-R*W*Sin[W*t] + l'[t]*Sin[\[Phi][t]] + l[t]*(\[Phi]'[t])*Cos[\[Phi][t]], R*W*Cos[W*t] - l'[t]*Cos[\[Phi][t]] + l[t]*(\[Phi]'[t])*Sin[\[Phi][t]]}; V = m*g*(R*Sin[W*t] - l[t]*Cos[\[Phi][t]]) + 1/2*k*(l[t] - l0)^2; T = 1/2*m*z1.z1; Lagrange = T - V; eqs = D[D[Lagrange, \[Phi]'[t]], t] - D[Lagrange, \[Phi][t]]; eqs2 = D[D[Lagrange, l'[t]], t] - D[Lagrange, l[t]]; g = 9.7; m = 1; l0 = 1; k = 1000; R = 2; W = Pi/2; sol = NDSolveValue[{eqs == 0, eqs2 == 0, l[0] == l0, l'[0] == 0, Derivative[1][\[Phi]][0] == 0, \[Phi][0] == 0}, {l[t], \[Phi][ t]}, {t, 0, 20}] {Plot[sol.{1, 0}, {t, 0, 10}, AxesLabel -> {"t", "l"}], Plot[sol.{0, 1}, {t, 0, 10}, AxesLabel -> {"t", "\[Phi]"}]} 
Posted 7 months ago
 Now I obtained my graphs.Thank you so much. :)
 Thanks for reply.I found this code from hereThanks [@Hans Dolhaine ][1] for animate , but I can see just pendulum without spring and disc.How can add the disc and spring in this code? z1 = {-R*W*Sin[W*t] + l'[t]*Sin[\[Phi][t]] + l[t]*(\[Phi]'[t])*Cos[\[Phi][t]], R*W*Cos[W*t] - l'[t]*Cos[\[Phi][t]] + l[t]*(\[Phi]'[t])*Sin[\[Phi][t]]}; V = m*g*(R*Sin[W*t] - l[t]*Cos[\[Phi][t]]) + 1/2*k*(l[t] - l0)^2; T = 1/2*m*z1.z1; Lagrange = T - V; eqs = D[D[Lagrange, \[Phi]'[t]], t] - D[Lagrange, \[Phi][t]]; eqs2 = D[D[Lagrange, l'[t]], t] - D[Lagrange, l[t]]; g = 9.7; m = 1; l0 = 1; k = 15; R = 2; W = Pi/2; sol = NDSolve[{eqs == 0, eqs2 == 0, l[0] == l0, l'[0] == 0, Derivative[1][\[Phi]][0] == 0, \[Phi][0] == 0}, {l[t], \[Phi][ t]}, {t, 0, 30}]; z1a = z1 /. Flatten[sol /. a_[t] -> a]; Animate[Graphics[{Red, PointSize[.05], Point[z1a /. t -> tt]}, Axes -> True, PlotRange -> {{-10, 10}, {-10, 10}}], {tt, 0, 30}] `