A puzzle with ParametricPlot. The first plot masks part of the range, but nevertheless plots test points in the masked area. Can I get rid of the mask? The second plot shows no mask(s), but I don't know why it works. Can I get an informed comment? Thanks for your time,
Whiffee Bollenbach
d2 = ImplicitRegion[
0 <= x < \[Infinity] \[And] -\[Infinity] < y < \[Infinity], {x, y}];
p2 = ParametricPlot[
Through[{Re, Im}[(x + I y)^0.5]], {x, y} \[Element] d2,
PlotRange -> {{-1, 3.5}, {-3, 3}}, Frame -> True, ImageSize -> 200,
AspectRatio -> Automatic,
Epilog -> {{Blue, PointSize[0.025],
Point[{Re[(x + I y)^0.5] /. {x -> 0, y -> -10},
Im[(x + I y)^0.5] /. {x -> 0, y -> -10}}]}, {Red,
PointSize[0.025],
Point[{Re[(x + I y)^0.5] /. {x -> 0, y -> -1},
Im[(x + I y)^0.5] /. {x -> 0, y -> -1}}]}, {Black,
PointSize[0.025],
Point[{Re[(x + I y)^0.5] /. {x -> 0, y -> 1},
Im[(x + I y)^0.5] /. {x -> 0, y -> 1}}]}}];
p3 = ParametricPlot[
Through[{Re, Im}[x + (I y)^3.5]], {x, y} \[Element] d2,
PlotRange -> {{-1, 3.5}, {-3, 3}}, Frame -> True, ImageSize -> 200,
AspectRatio -> Automatic,
Epilog -> {{Blue, PointSize[0.025],
Point[{Re[(x + I y)^0.5] /. {x -> 0, y -> -10},
Im[(x + I y)^0.5] /. {x -> 0, y -> -10}}]}, {Red,
PointSize[0.025],
Point[{Re[(x + I y)^0.5] /. {x -> 0, y -> -1},
Im[(x + I y)^0.5] /. {x -> 0, y -> -1}}]}, {Black,
PointSize[0.025],
Point[{Re[(x + I y)^0.5] /. {x -> 0, y -> 1},
Im[(x + I y)^0.5] /. {x -> 0, y -> 1}}]}}];
Row[{p2, p3}]