Symmetric Minimality
After I posted Minimal on Mathstodon, David Eppstein asked about and then found a minimal lattice trefoil with 3-hedral symmetry.
Here are the (mean-centered) vertices:
symmetrictrefoil = # - Table[Mean[#], {Length[#]}] &[{{0, 0, 0},
{1, 0, 0}, {2, 0, 0}, {2, 0, 1}, {2, 1, 1}, {2, 2, 1}, {1, 2, 1},
{0, 2, 1}, {-1, 2, 1}, {-1, 2, 0}, {-1, 2, -1}, {-1, 1, -1},
{0, 1, -1}, {1, 1, -1}, {1, 1, 0}, {1, 1, 1}, {1, 1, 2},
{1, 2, 2}, {1, 3, 2}, {0, 3, 2}, {0, 3, 1}, {0, 3, 0}, {0, 2, 0}, {0, 1, 0}}];
The animation demonstrates the 3-fold symmetry which is lacking from the relatively asymmetric minimal trefoil from Minimal (which was just the one built into KnotPlot).
smootheststep[t_] := -20 t^7 + 70 t^6 - 84 t^5 + 35 t^4;
DynamicModule[{p = {-1, 0, 0}, q = Normalize[{0, 1, 1}], a, b, n, M, pl, θ,
cols = RGBColor /@ {"#404b69", "#f73859", "#283149"}},
Manipulate[
θ = 2 Pi/3 smootheststep[t];
{n, b} = RotationMatrix[θ, {-1, -1, 1}].# & /@ {p, q};
a = Cross[b, n];
M = {a, b};
pl = M.# & /@ symmetrictrefoil;
Graphics[{
Thickness[.0052], cols[[1]], Line[Append[#, First[#]] &[pl]],
cols[[2]], Disk[M.#, .05] & /@ Sort[symmetrictrefoil, n.#1 > n.#2 &]},
ImageSize -> 540, PlotRange -> {{-2.75, 2.75}, {-2.5, 3}},
Background -> cols[[-1]]],
{t, 0, 1}]
]