Besides the interesting discussion about radians considered or not as dimensionless units (just read about why they shouldn't be dimensionless [1]), you can have your own simple QuantityMagnitude that effectively normalizes radians:
quantityMagnitudeRadians[q_, unit_] := QuantityMagnitude[q/Quantity[1, unit]]
This would work for all these cases:
In[64]:= quantityMagnitudeRadians[5, "Radians"]
Out[64]= 5
In[59]:= quantityMagnitudeRadians[Quantity[4, "Radians"], "Radians"]
Out[59]= 4
In[60]:= quantityMagnitudeRadians[Quantity[4, 1/"Seconds"], "Radians"/"Seconds"]
Out[60]= 4
In[61]:= quantityMagnitudeRadians[Quantity[4, "AngularDegrees"], "Radians"]
Out[61]= \[Pi]/45
In[62]:= quantityMagnitudeRadians[Quantity[4, 1/"Seconds"], "Radians"/"Seconds"]
Out[62]= 4
In[63]:= quantityMagnitudeRadians[Quantity[4, "AngularDegrees"/"Seconds"], "Radians"/"Seconds"]
Out[63]= \[Pi]/45
[1] https://iopscience.iop.org/article/10.1088/1681-7575/ab27d7