What do you mean?
Perhaps this?
f[p0_, p1_] :=
Module[{},
Subscript[p, 0] = p0;
Subscript[p, 1] = p1;
1/(2 bb n (Subscript[p, 0] + (-1 + n) Subscript[p, 1]))
\!
\*SubsuperscriptBox[\(p\), \(0\), \(-n\)] (-2 (-100 + d2)
\!
\*SubsuperscriptBox[\(p\), \(0\), \(2\)] +
2 bb (d2 + 100 (-1 + n))
\!
\*SubsuperscriptBox[\(p\), \(0\), \(2 + n\)] - bb (-1 + n) n
\!
\*SubsuperscriptBox[\(p\), \(0\), \(n\)] Subscript[p,
1] (200 + (-100 + 2 d1 - d2) Subscript[p, 1]) + 2 bb n
\!
\*SubsuperscriptBox[\(p\), \(0\), \(1 +
n\)] (-100 + (-d1 + d2 + 100 (-1 + n)) Subscript[p, 1]))];
f[a, b]
Out[2]= (1/(2 bb (a + b (-1 + n)) n))a^-n (-2 a^2 (-100 + d2) +
2 a^(2 + n) bb (d2 + 100 (-1 + n)) +
2 a^(1 + n) bb (-100 + b (-d1 + d2 + 100 (-1 + n))) n -
a^n b bb (200 + b (-100 + 2 d1 - d2)) (-1 + n) n)