The unique difference between 2 systems of equations is the constant coefficients.
The possible problem is that one is taken as PDEs and the other as ODEs.
eq1 = DSolve[{
\!\(\*SuperscriptBox[\(C20\),
TagBox[
RowBox[{"(",
RowBox[{"2", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[R2, T] == 0, (Jrm R0^2 + Rr C20[0, T])
\!\(\*SuperscriptBox[\(C20\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[0, T] == 0}, C20, {R2, T},
Assumptions -> {T > 0}, GeneratedParameters -> F1]
(*{{C20\[Rule]Function[{R2,T},F1[1][T]]},{C20\[Rule]Function[{R2,T},(-\
Jrm R0^2+R2 Rr F1[2][T])/Rr]}}*)
eq2 = DSolve[{
-2
\!\(\*SuperscriptBox[\(C20\),
TagBox[
RowBox[{"(",
RowBox[{"2", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[R2, T] == 0,
4 (Jrm R0^2 + Rr C20[0, T])
\!\(\*SuperscriptBox[\(C20\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[0, T] == 0}, C20, {R2, T},
Assumptions -> {T > 0}, GeneratedParameters -> F1]
(*{{C20\[Rule]Function[{R2,T},-((Jrm R0^2)/Rr)]}}*)
eq3 = DSolve[{
-2 R0
\!\(\*SuperscriptBox[\(C20\),
TagBox[
RowBox[{"(",
RowBox[{"2", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[R2, T] == 0, 4 R0 (Jrm R0^2 + Rr C20[0, T])
\!\(\*SuperscriptBox[\(C20\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[0, T] == 0}, C20, {R2, T},
Assumptions -> {T > 0}, GeneratedParameters -> F1]
(*{{C20\[Rule]Function[{R2,T},-((Jrm R0^2)/Rr)]}}*)