I'm trying to do the iterative jacobian method but I can't get the output
* Let' s do the Iterative Jacobian Method! *)
counter = 1; loopiter = 5;
While[True,
\[Theta]est = {Part[\[Theta]i, 1, 1], Part[\[Theta]i, 2, 1],
Part[\[Theta]i, 3, 1]};
\[Theta]1 = Part[\[Theta]est, 1, 1]; \[Theta]2 =
Part[\[Theta]est, 2, 1]; \[Theta]3 = Part[\[Theta]est, 3, 1];
pnew = p0T;
dP = pG - pnew;
Jnew = J0trans;
d\[Theta] = Inverse (Jnew).dP;
\[Theta]i = \[Theta]est + d\[Theta];
If[counter > loopiter, Break[]]; counter++
];
Print["\[Theta]i = ", MatrixForm[\[Theta]i]]
WHERE
p0T = (Cos[\[Theta]1] (0.3 +Cos[\[Theta]2] (0.3 +0.15 Cos[\[Theta]3])-0.15 Sin[\[Theta]2] Sin[\[Theta]3])
Sin[\[Theta]1] (0.3 +Cos[\[Theta]2] (0.3 +0.15 Cos[\[Theta]3])-0.15 Sin[\[Theta]2] Sin[\[Theta]3])
0.3 Sin[\[Theta]2]+0.15 Sin[\[Theta]2+\[Theta]3]
1.
pG = {0.35, 0.05, 0.35}
J0trans = (-Sin[\[Theta]1] (0.3 +Cos[\[Theta]2] (0.3 +0.15 Cos[\[Theta]3])-0.15 Sin[\[Theta]2] Sin[\[Theta]3]) Cos[\[Theta]1] (-(0.3 +0.15 Cos[\[Theta]3]) Sin[\[Theta]2]-0.15 Cos[\[Theta]2] Sin[\[Theta]3]) Cos[\[Theta]1] (-0.15 Cos[\[Theta]3] Sin[\[Theta]2]-0.15 Cos[\[Theta]2] Sin[\[Theta]3])
Cos[\[Theta]1] (0.3 +Cos[\[Theta]2] (0.3 +0.15 Cos[\[Theta]3])-0.15 Sin[\[Theta]2] Sin[\[Theta]3]) Sin[\[Theta]1] (-(0.3 +0.15 Cos[\[Theta]3]) Sin[\[Theta]2]-0.15 Cos[\[Theta]2] Sin[\[Theta]3]) Sin[\[Theta]1] (-0.15 Cos[\[Theta]3] Sin[\[Theta]2]-0.15 Cos[\[Theta]2] Sin[\[Theta]3])
0 0.3 Cos[\[Theta]2]+0.15 Cos[\[Theta]2+\[Theta]3] 0.15 Cos[\[Theta]2+\[Theta]3]
)
)