Group Abstract Group Abstract

Message Boards Message Boards

0
|
7.9K Views
|
4 Replies
|
2 Total Likes
View groups...
Share
Share this post:

Solve a 3x3 ODE system?

Posted 6 years ago
POSTED BY: Ermanno Citraro
4 Replies

This can be used as a regular analytical solution, for example

s = DSolve[{i[t] == Cr vc'[t], 
    vc[t] == vco[t] (1 + m) - Lr i'[t], -(1 + m) i[t] - vco[t]/RL == 
     Co vco'[t], vc[0] == Vcrmax, i[0] == 0, vco[0] == Vo}, {i, vc, 
    vco}, t];

{Plot[Evaluate[
   i[t] /. s[[1, 1]] /. {Cr -> 1, Lr -> 1, m -> 1, Co -> 1, RL -> 1, 
     Vcrmax -> 1, Vo -> 1}], {t, 0, 2 Pi}, AxesLabel -> {"t", "i"}], 
 Plot[Evaluate[
   vc[t] /. s[[1, 2]] /. {Cr -> 1, Lr -> 1, m -> 1, Co -> 1, RL -> 1, 
     Vcrmax -> 1, Vo -> 1}], {t, 0, 2 Pi}, AxesLabel -> {"t", "vc"}], 
 Plot[Evaluate[
   vco[t] /. s[[1, 3]] /. {Cr -> 1, Lr -> 1, m -> 1, Co -> 1, RL -> 1,
      Vcrmax -> 1, Vo -> 1}], {t, 0, 2 Pi}, 
  AxesLabel -> {"t", "vco"}]}

Figure 1

They are algebraic objects that are comlicated, because they involve equations of degree 3. Try with numerical values for the parameters:

With[{Cr = 1, Lr = 1, Co = 1, m = 1, RL = 1, Vcrmax = 1, Vo = 1}, 
  DSolveValue[{i[t] == Cr vc'[t], 
    vc[t] == vco[t] (1 + m) - Lr i'[t], -(1 + m) i[t] - vco[t]/RL == 
     Co vco'[t], vc[0] == Vcrmax, i[0] == 0, vco[0] == Vo}, {i[t], 
    vc[t], vco[t]}, t]] // N
POSTED BY: Gianluca Gorni

Thanks sir.

POSTED BY: Ermanno Citraro

Grazie Gianluca.

POSTED BY: Ermanno Citraro
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard