Just as a (cautionary) note, the bounds produced by RootIntervals[]
in this particular case aren't very tight:
s1 = RootIntervals[x^5 - Sqrt[3] x Root[-4 + #1^3 &, 1] + Root[3 + #1^3 &, 1], Reals]
{{{-(5799246877899597/4503599627370496), -(8293940660758793/9007199254740992)},
{-(7591302381148321/9007199254740992), 0}, {0,6896505648855517/4503599627370496}},
{{1}, {1}, {1}}}
Abs[Subtract @@@ First[%]] // N
{0.366879, 0.842804, 1.53133}
For comparison:
Union[MinimalPolynomial[#, x] & /@
(x /. Solve[x^5 - Sqrt[3] x Root[-4 + #1^3 &, 1] + Root[3 + #1^3 &, 1] == 0, x])]
{729 - 104976 x^6 + 5038848 x^12 - 1458 x^15 - 80621568 x^18 - 1749600 x^21 -
33592320 x^27 + 1215 x^30 - 1644624 x^36 + 559872 x^42 - 540 x^45 - 194400 x^51 +
135 x^60 - 1296 x^66 - 18 x^75 + x^90}
s2 = RootIntervals[First[%], Reals]
{{{-(161/128), -(513/512)}, {-(139/256), -(17/32)}, {1/512, 533/1024},
{5/4, 13/8}}, {{1}, {1}, {1}, {1}}}
Abs[Subtract @@@ First[%]] // N
{0.255859, 0.0117188, 0.518555, 0.375}
As a visual check:
NumberLinePlot[{Apply[IntervalUnion, Interval /@ First[s1]],
Apply[IntervalUnion, Interval /@ First[s2]]}]
