It is rather unclear what you want to integrate. Below there are three alternatives with three different values:
NMaximize[{[Integral]\!(
*SubsuperscriptBox[([Integral]), (
*SuperscriptBox[(x), (2)] +
*SuperscriptBox[(y), (2)]), (36)](
*FractionBox[(1), ([Pi])] ((
*SuperscriptBox[(x), (2)] +
*SuperscriptBox[(y), (2)])) [DifferentialD]x [DifferentialD]y\
)), x >= 0, y >= 0, x^2 + y^2 <= 36}, {x, y}]
Out[69]= {25789., {x -> 0., y -> 6.}}
NMaximize[{[Integral][Integral]1/[Pi] (x^2 +
y^2) [DifferentialD]x [DifferentialD]y, x >= 0, y >= 0,
x^2 + y^2 <= 36}, {x, y}]
Out[70]= {68.7549, {x -> 4.24264, y -> 4.24264}}
NMaximize[{\!(
*SubsuperscriptBox[([Integral]), (
*SuperscriptBox[(x), (2)] +
*SuperscriptBox[(y), (2)]), (36)](
*SubsuperscriptBox[([Integral]), (
*SuperscriptBox[(x), (2)] +
*SuperscriptBox[(y), (2)]), (36)]
*FractionBox[(1), ([Pi])] ((
*SuperscriptBox[(x), (2)] +
*SuperscriptBox[(y), (2)])) [DifferentialD]x [DifferentialD]y\
)), x >= 0, y >= 0, x^2 + y^2 <= 36}, {x, y}]
Out[72]= {-1.1913110^9, {x -> 2.0236310^-9, y -> 5.45121*10^-9}}