If a is negative and real, then Log [ a ] = I Pi + Log[ Abs[a] ]. ( I^2 = -1 )
This is a complex number with constant imaginary part. So you might want to consider
LogPlot[Abs[\[Omega]1] /. qx -> 1000, {El, 10^-6, 2.52 10^9},
Frame -> True, FrameLabel -> {"\!\(\*
StyleBox[\"E\",\nFontSlant->\"Italic\",\nFontColor->GrayLevel[0]]\)",
"\!\(\*
StyleBox[SubscriptBox[\"\[Omega]\", \"+\"],\nFontSize->14,\n\
FontWeight->\"Bold\"]\)"},
PlotStyle -> Black, FrameTicksStyle -> Directive[Black, 9],
PlotRange -> Full, ImageSize -> 650]
or, perhaps better
Plot[Log[Abs[\[Omega]1]] /. qx -> 1000, {El, 10^-6, 2.52 10^9},
Frame -> True, FrameLabel -> {"\!\(\*
StyleBox[\"E\",\nFontSlant->\"Italic\",\nFontColor->GrayLevel[0]]\)",
"\!\(\*
StyleBox[SubscriptBox[\"\[Omega]\", \"+\"],\nFontSize->14,\n\
FontWeight->\"Bold\"]\)"},
PlotStyle -> Black, FrameTicksStyle -> Directive[Black, 9],
PlotRange -> Full, ImageSize -> 650]