Here comes a first guess how this could be done - easily - in Wolfram Language:
pos = GeoPosition[{45.530060, -73.547783}];
rInner = Quantity[245, "Meters"];
rOuter = Quantity[245 + 190, "Meters"];
\[Phi]1 = 268 ;
\[Phi]2 = (268 + 22) ;
center = GeoDestination[pos,
GeoDisplacement[{Mean[{rInner, rOuter}],
Mean[{\[Phi]1, \[Phi]2}]}]];
GeoGraphics[{Thick, Red,
GeoCircle[pos, rOuter, {\[Phi]1, \[Phi]2}],
GeoCircle[pos, rInner, {\[Phi]2, \[Phi]1}],
GeoPath[{GeoDestination[pos, GeoDisplacement[{rInner, \[Phi]1}]],
GeoDestination[pos, GeoDisplacement[{rOuter, \[Phi]1}]]}],
GeoPath[{GeoDestination[pos, GeoDisplacement[{rInner, \[Phi]2}]],
GeoDestination[pos, GeoDisplacement[{rOuter, \[Phi]2}]]}],
GeoMarker[center], pos}, ImageSize -> 700]

Isn't Mathematica just great ?!