In[1]:= Clear["Global'*"]
In[2]:= nut = 46
khi = 100
ro2 = 50
kmrs = 180
kisu = .05
kmp = 1
kres = 1
kccc1 = 30
k23 = 16
kvp = .04
kc = 21
nc = 5
km1 = 24
nm1 = 3
km2 = 50
nm2 = 4
kv1 = 29
nv1 = 9
kv2 = 200
nv2 = 4
k32 = 18
n32 = 9
a = .5
Out[2]= 46
Out[3]= 100
Out[4]= 50
Out[5]= 180
Out[6]= 0.05
Out[7]= 1
Out[8]= 1
Out[9]= 30
Out[10]= 16
Out[11]= 0.04
Out[12]= 21
Out[13]= 5
Out[14]= 24
Out[15]= 3
Out[16]= 50
Out[17]= 4
Out[18]= 29
Out[19]= 9
Out[20]= 200
Out[21]= 4
Out[22]= 18
Out[23]= 9
Out[24]= 0.5
In[25]:= odec =
khi*(1/(1 + (c[t]/kc)^(nc)))*nut -
kmrs*(1/(1 + (c[t]/km1)^(nm1)))*(1/(1 + (fs[t]/km2)^(nm2)))*c[t] -
kccc1 (1 - (1/(1 + (c[t]/kv1)^(nv1))))*(1/(1 + (f3[t]/kv2)^(nv2)))*
c[t] - a*c[t]
odefm = kmrs*(1/(1 + (c[t]/km1)^(nm1)))*(1/(1 + (fs[t]/km2)^(nm2)))*
c[t] - kisu*fm[t] - a*fm[t]
odefs = kisu*fm[t] - kmp*fs[t]*o2[t] - a*fs[t]
odemp = kmp*fs[t]*o2[t] - a*mp[t]
odeo2 = ro2 - kres*fs[t]*o2[t] - a*o2[t]
odef2 = kccc1*(1 - (1/(1 + (c[t]/kv1)^(nv1))))*(1/(1 + (f3[t]/
kv2)^(nv2)))*c[t] -
k23*(1 - (1/(1 + (c[t]/k32)^(n32))))*f2[t] - a*f2[t]
odef3 = k23*(1 - (1/(1 + (c[t]/k32)^(n32))))*f2[t] - kvp*f3[t] -
a*f3[t]
odevp = kvp*f3[t] - a*vp[t]
Out[25]= -0.5 c[t] + 4600/(1 + c[t]^5/4084101) - (
30 c[t] (1 - 1/(1 + c[t]^9/14507145975869)))/(
1 + f3[t]^4/1600000000) - (
180 c[t])/((1 + c[t]^3/13824) (1 + fs[t]^4/6250000))
Out[26]= -0.55 fm[t] + (
180 c[t])/((1 + c[t]^3/13824) (1 + fs[t]^4/6250000))
Out[27]= 0.05 fm[t] - 0.5 fs[t] - fs[t] o2[t]
Out[28]= -0.5 mp[t] + fs[t] o2[t]
Out[29]= 50 - 0.5 o2[t] - fs[t] o2[t]
Out[30]= -0.5 f2[t] - 16 (1 - 1/(1 + c[t]^9/198359290368)) f2[t] + (
30 c[t] (1 - 1/(1 + c[t]^9/14507145975869)))/(1 + f3[t]^4/1600000000)
Out[31]= 16 (1 - 1/(1 + c[t]^9/198359290368)) f2[t] - 0.54 f3[t]
Out[32]= 0.04 f3[t] - 0.5 vp[t]
In[36]:= vars =
List[c[t], f2[t], f3[t], fm[t], fs[t], mp[t], o2[t], vp[t]]
Out[36]= {c[t], f2[t], f3[t], fm[t], fs[t], mp[t], o2[t], vp[t]}
In[38]:= NDSolve[{c'[t] = odec, f2'[t] = odef2, f3'[t] = odef3,
fm'[t] = odefm, fs'[t] = odefs, mp'[t] = odemp, o2'[t] = odeo2,
vp'[t] = odevp, c[0] == 30, f2[0] == 100, f3[0] == 100, fm[0] == 50,
fs[0] == 50, mp[0] == 0, o2[0] = 100, vp[0] == 100}, vars, {t, 0,
31}]
During evaluation of In[38]:= NDSolve::deqn: Equation or list of equations expected instead of -0.5 c[t]+4600/(1+c[t]^5/4084101)-(30 c[t] (1-1/(1+Power[<<2>>]/14507145975869)))/(1+f3[t]^4/1600000000)-(180 c[t])/((1+c[t]^3/13824) (1+fs[t]^4/6250000)) in the first argument {-0.5 c[t]+4600/(1+c[<<1>>]^5/4084101)-(30 c[t] (1-1/(1+Times[<<2>>])))/(1+f3[<<1>>]^4/1600000000)-(180 c[t])/((1+c[<<1>>]^3/13824) (1+fs[<<1>>]^4/6250000)),-0.5 f2[t]-16 (1-1/(1+Times[<<2>>])) f2[t]+(30 c[t] (1-1/(1+Times[<<2>>])))/(1+f3[<<1>>]^4/1600000000),16 (1-1/(1+Times[<<2>>])) f2[t]-0.54 f3[t],-0.55 fm[t]+(180 c[t])/((1+c[<<1>>]^3/13824) (1+fs[<<1>>]^4/6250000)),0.05 fm[t]-0.5 fs[t]-fs[t] o2[t],-0.5 mp[t]+fs[t] o2[t],50-0.5 o2[t]-fs[t] o2[t],0.04 f3[t]-0.5 vp[t],c[0]==30,f2[0]==100,f3[0]==100,fm[0]==50,fs[0]==50,mp[0]==0,100,vp[0]==100}. >>
Out[38]= NDSolve[{-0.5 c[t] + 4600/(1 + c[t]^5/4084101) - (
30 c[t] (1 - 1/(1 + c[t]^9/14507145975869)))/(
1 + f3[t]^4/1600000000) - (
180 c[t])/((1 + c[t]^3/13824) (1 + fs[t]^4/6250000)), -0.5 f2[t] -
16 (1 - 1/(1 + c[t]^9/198359290368)) f2[t] + (
30 c[t] (1 - 1/(1 + c[t]^9/14507145975869)))/(
1 + f3[t]^4/1600000000),
16 (1 - 1/(1 + c[t]^9/198359290368)) f2[t] -
0.54 f3[t], -0.55 fm[t] + (
180 c[t])/((1 + c[t]^3/13824) (1 + fs[t]^4/6250000)),
0.05 fm[t] - 0.5 fs[t] - fs[t] o2[t], -0.5 mp[t] + fs[t] o2[t],
50 - 0.5 o2[t] - fs[t] o2[t], 0.04 f3[t] - 0.5 vp[t], c[0] == 30,
f2[0] == 100, f3[0] == 100, fm[0] == 50, fs[0] == 50, mp[0] == 0,
100, vp[0] == 100}, {c[t], f2[t], f3[t], fm[t], fs[t], mp[t], o2[t],
vp[t]}, {t, 0, 31}]
Having a little bit of trouble working on a system of ODE's. I think I have the syntax right but it keeps giving me an error so obviously not. Any pointers?