The ratios such as 1:3 indicate how Two girds are connected to each other such as A and B. Since arcsin(1/3) is irrational w.r.t pi you could just keep on using 1:3 to connect grid C to B and so on to keep the rotation going. Due to the irrationality, the orientations of the grids would approximately fill out all the angles from 0 to 2pi. But this is just an simple example, you can also let the ratio change as you noted.
In my examples only a minority of nodes is shared between grids for simplicity. But a further option would be to let the grids share half of their nodes or even the majority and you could in principle still achieve the desired distances and symmetries but it's more difficult to visualize.
If you choose random starting points that aren't on the same grid you can't walk in parallel at maximal precision but neither can you move real elementary particles at sub-plack precision. You can however take a path through multiple different grids until you find a grid that approximately points in the direction you want to move which you can use for approximate parallel motion.
In graph theory the distance is the length of the shortest path measured in the number of edges you have to walk over. But the Lorentz distance on the other hand is the length of the Longest time-like path.