@Gianluca Gorni : Nice - simple, but very intuitive!
I guess for the full solution one needs ParametricNDSolve
and friends:
ClearAll["Global`*"]
(* define the Lotka model: *)
x0 = 2; y0 = 1.5;
tRange = {t, 0, 30};
deq = {x'[t] == x[t] (1 - y[t]), y'[t] == y[t] (-\[Lambda] + x[t]), x[0] == x0, y[0] == y0};
(* solve it: *)
lotka = ParametricNDSolveValue[deq, {x[t], y[t]}, tRange, {\[Lambda]}];
(* show the solution: *)
Manipulate[ParametricPlot[lotka[\[Lambda]], Evaluate@tRange, PlotRange -> {{0, 11}, {0, 4.3}}, PerformanceGoal -> "Quality",
ImageSize -> Large, GridLines -> {{x0}, {y0}}, Epilog -> {Dashed, Red,
InfiniteLine[{{\[Lambda], 0}, {\[Lambda], 1}}]}], {\[Lambda], .3, 5}]
Manipulate[
Plot[Evaluate@lotka[\[Lambda]], tRange, Filling -> Bottom,
PlotRange -> {0, Automatic}, ImageSize -> Large], {\[Lambda], 0, 5}]