when I try to define
f[k_]:=B k^4 (-M+E^-Subscript[h, 0] M-E^-Subscript[h, 0] G M+15 M \[Epsilon]-15 E^-Subscript[h, 0] M \[Epsilon])+k^2 (B E^-Subscript[h, 0] M-B E^-Subscript[h, 0] G M-A Mp+B E^-Subscript[h, 0] M \[Epsilon])
Manipulate does not work, I do not know why. That's why I pasted long function in code..
Manipulate[
Plot[B k^4 (-M + E^-Subscript[h, 0] M - E^-Subscript[h, 0] G M +
15 M \[Epsilon] - 15 E^-Subscript[h, 0] M \[Epsilon]) +
k^2 (B E^-Subscript[h, 0] M - B E^-Subscript[h, 0] G M - A Mp +
B E^-Subscript[h, 0] M \[Epsilon]), {k, 0, 7}, Frame -> True,
FrameLabel -> {"k", \[Omega]}, RotateLabel -> False,
FrameTicks -> None,
Epilog -> {PointSize[
Large], (Point[{#, (B k^4 (-M + E^-Subscript[h, 0] M -
E^-Subscript[h, 0] G M + 15 M \[Epsilon] -
15 E^-Subscript[h, 0] M \[Epsilon]) +
k^2 (B E^-Subscript[h, 0] M - B E^-Subscript[h, 0] G M -
A Mp + B E^-Subscript[h, 0] M \[Epsilon])) /.
k -> #}] &) /@ (k /.
NSolve[(B k^4 (-M + E^-Subscript[h, 0] M -
E^-Subscript[h, 0] G M + 15 M \[Epsilon] -
15 E^-Subscript[h, 0] M \[Epsilon]) +
k^2 (B E^-Subscript[h, 0] M - B E^-Subscript[h, 0] G M -
A Mp + B E^-Subscript[h, 0] M \[Epsilon])) == 0 &&
k > 0, k])}], {A, -1, 100}, {Mp, -5, 10}, {Subscript[h, 0],
1, 4}, {G, 1, 4}, {\[Epsilon], 0, 1/15}, {B, 8, 8}, {M, 1, 1}]