# Storing results of a calculation as a list

Posted 3 months ago
482 Views
|
|
1 Total Likes
|
 Clear[Pressure, EnergyDensity, fromPressureToEnergy, fromEnergyToPressure, Ae, Be, Ap, Bp, Er, Mr, Pr, r, h, g1, f1, k1, m1, f2, g2, k2, m2, f3, g3, k3, m3, f4, m4, g4, k4, M, R]; Ae = Import["D:\\Energy density.xlsx", {"Data", 1, All, 1}]; Be = Ae*(10^-6/1.1154907); EnergyDensity = Be/(0.08969); Ap = Import["D:\\Pressure.xlsx", {"Data", 1, All, 1}]; Bp = Ap*(10^-6/1.1154907); Pressure = Bp/(0.08969); fromPressureToEnergy = Interpolation[Most@Transpose[{Pressure, EnergyDensity}], InterpolationOrder -> 1]; fromEnergyToPressure = Interpolation[Most@Transpose[{EnergyDensity, Pressure}], InterpolationOrder -> 1]; Er = (1637.99731*(10^-6/1.1154907)/0.08969); (*Initial value*) h = 0.0001; Mr = 10^-33; Pr = fromEnergyToPressure[Er]; r = h; While[Pr > 0, g1 = 4*\[Pi]*r^2*Er*.08969; f1 = -(1.47*Mr* Er*(1 + Pr/Er)*(1 + 4*\[Pi]*r^3*Pr*.08969/Mr))/(r^2*(1 - 2*Mr*1.47/r)); k1 = h*f1; m1 = h*g1; f2 = -(1.47*Mr* Er*(1 + (Pr + k1/2)/Er)*(1 + 4*\[Pi]*(r + h/2)^3*(Pr + k1/2)*.08969/Mr))/((r + h/2)^2*(1 - 2*Mr*1.47/(r + h/2))); g2 = 4*\[Pi]*(r + h/2)^2*(Er + m1/2)*.08969; k2 = h*f2; m2 = h*g2; f3 = -(1.47*Mr* Er*(1 + (Pr + k2/2)/Er)*(1 + 4*\[Pi]*(r + h/2)^3*(Pr + k2/2)*.08969/Mr))/((r + h/2)^2*(1 - 2*Mr*1.47/(r + h/2))); g3 = 4*\[Pi]*(r + h/2)^2*(Er + m2/2)*.08969; k3 = h*f3; m3 = h*g3; f4 = -(1.47*Mr* Er*(1 + (Pr + k3)/Er)*(1 + 4*\[Pi]*(r + h)^3*(Pr + k3)*.08969/Mr))/((r + h)^2*(1 - 2*Mr*1.47/(r + h))); g4 = 4*\[Pi]*(r + h)^2*(Er + m3)*.08969; k4 = h*f4; m4 = h*g4; Pr = Pr + 1/6*(k1 + 2*k2 + 2*k3 + k4); Mr = Mr + 1/6*(m1 + 2*m2 + 2*m3 + m4); Er = fromPressureToEnergy[Pr]; r = r + h; ] M = Mr; (*result*) R = r;(*result*) Dear Friends in the code above I have an initial value for (Er) which is (1637.99731*(10^-6/1.1154907)/0.08969) and the final results are (M) and (R). My question is that how I can solve this code for various (Er) which varies from the initial value above to (135*(10^-6/1.1154907)/0.08969) and for each of the (Er) I want to save M and R. Therefore, finally I could have something like a list that consists of different (M) and (R) that related to various (Er) which are considered as the initial value.In fact, my code only works for one (Er) and as a result one (M) and (R) for the chosen (Er). What I need to do is solving my code for various (Er) regarding the mentioned interval. Answer Answer