Message Boards Message Boards

0
|
4199 Views
|
2 Replies
|
1 Total Likes
View groups...
Share
Share this post:

How to Find the Equation of a Plane From Two Lines

If we have two lines in 3-D space,
z = a*x + c
z = b*y + d
How do I find the plane that passes through those lines?
POSTED BY: Onur Cagirici
2 Replies
Posted 11 years ago
Hi Onur,
Yes, those are each an equation for a line in 2-D space.
If you mean for equation 1 to define a line in the X-Z plane, then you must also require y=0.
If you mean equation 2 to define a line in the Y-Z plane then x=0 is required.
In 3-space, two lines may or may not lie in the same plane. In linear algebra, they lie in the same plane iff there is an R3->R2 projection operator which leaves both lines unchanged.
Best,
David
POSTED BY: David Keith
1. Your equations define planes, not lines.

2. Generically lines with independent coefficients are skew.
POSTED BY: Michael Rogers
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract