Basically, my task is in the question. I need to find out the standard error and I've actually written the code like I imagine it should be. I'll attach a screenshot indicating the output. It should not be this way. Where have I made mistakes?
The code:
In[136]:= Needs["ErrorBarPlots`"]
standardError[val_] := StandardDeviation[val]/Sqrt[val["PathLength"]]
In[33]:= coeficientOfVariation[val_] :=
StandardDeviation[val]/Mean[val["PathLength"]]
In[13]:= errorBar[type_: "GlassRectangle"][{{x0_, x1_}, {y0_, y1_}},
value_, meta_] :=
Block[{error, mags = QuantityMagnitude[value]},
error = Flatten[QuantityMagnitude[meta]];
error =
If[error === {}, 0,
Last[error]]; {ChartElementData[type][{{x0, x1}, {y0, y1}}, mags,
meta], {Black,
Line[{{{(x0 + x1)/2, y1 - error}, {(x0 + x1)/2,
y1 + error}}, {{1/4 (3 x0 + x1),
y1 + error}, {1/4 (x0 + 3 x1),
y1 + error}}, {{1/4 (3 x0 + x1),
y1 - error}, {1/4 (x0 + 3 x1), y1 - error}}}]}}]
In[7]:= RadM = {7.3, 6.8, 8.2}
RadH = {6.1, 9.4, 11}
RadR = {7.4, 5.9, 4.9}
RadB = {13.8}
In[28]:= stdErr = standardError[RadM]
Out[28]= standardError[{7.3, 6.8, 8.2}]
In[29]:= varCoef = coefficientOfVariation[RadM]
Out[29]= coefficientOfVariation[{7.3, 6.8, 8.2}]
Here's the resulting graph:
