Try this, but it seems that there is some difficulty at alpha = Pi: Complex Infinity encountered.
l = 300;
k[\[Alpha]_] := Sin[\[Alpha]/2]^2;
m = 2;
\[Lambda]L = (2*m*EllipticK[k[\[Alpha]]])/l;
x1L[s_] := -s +
2/\[Lambda]L (EllipticE[
JacobiAmplitude[s*\[Lambda]L + EllipticK[k[\[Alpha]]],
k[\[Alpha]]], k[\[Alpha]]] -
EllipticE[JacobiAmplitude[EllipticK[k[\[Alpha]]], k[\[Alpha]]],
k[\[Alpha]]]);
x2L[s__] := -2 k[\[Alpha]]/\[Lambda]L (JacobiCN[
EllipticK[k[\[Alpha]]] + (s*\[Lambda]L), k[\[Alpha]]]);
Manipulate[
ParametricPlot[{x1L[s], x2L[s]} /. \[Alpha] -> aa, {s, 0, l},
AxesLabel -> {x, y},
LabelStyle -> {FontSize -> 10, Darker[Black], Bold},
PlotRange -> {-60, 60}], {{aa, Pi/2}, 0, 2 Pi}]
x1L[.2] /. \[Alpha] -> Pi
x2L[.2] /. \[Alpha] -> Pi