Group Abstract Group Abstract

Message Boards Message Boards

Representation of the updates in Wolfram Model by linear operators

I was reading "Some Quantum Mechanical Properties of the Wolfram Model" by Gorard and technical introduction by Wolfram, and was trying to understand the construction of quantum evolution. I am not sure I am understanding it correctly at all.

At the end of the page 555-beginning of the page 556 Gorard writes:

Given our interpretation of the multiway system as a discrete analog of Some Quantum Mechanical Properties of the Wolfram Model https://doi.org/10.25088/ComplexSystems.29.2.537 (complex) projective Hilbert space, we may interpret rewrite relations as being linear operators $\hat{A}$ acting upon this space: $$ \hat{A}=\sumi{ei \hat{A}_i}$$ for basis vectors $e_i$ , and with each component operator $A_i$ yielding a corresponding eigenvalue $a_i$ when applied to the wavefunction ψ: $$ \hat{A}i\psi=ai \psi$$ where this wavefunction corresponds to a particular “branchlike hypersurface” in the multiway system, and the associated eigenvalue corresponds to the sum of path weights for a particular state or collection of states in some neighboring hypersurface (corresponding to the subsequent evolution step). Interpreting this rewrite relation as corresponding to some observable quantity $A$, it therefore follows that: $$ \hat{A} \psi = a \psi,$$ for some eigenvalue a, which itself corresponds to the measured value of $A$

I am not sure how exactly I should interpret this description. At first, I thought the description was trying to say something like this: branchlike hypersurfaces in the multiway graph correspond to the wave function, and each update corresponds to the application of the quantum operator $\hat{A}$, which multiplies the wavefunction by the number of paths from one hypersurface to the next. Then, when I saw that the commutator of two operators is imaginary, $i\hbar$, I concluded, that I must multiply the number of paths by additional $i \hbar$ (otherwise the commutator is integer). But then it stopped making sense to me again, because $\hbar$ has a specific units, and I would expect evolution operator to be unitless, which means, instead of $\hbar$ one must have a numerical constant. At this point, though, my thinking diverges with texts from Wolfram and Gorard, because none of them mentions any fundamental numerical constants.

I feel at this point I really need a help from someone, who understands realization of quantum evolution in Wolfram models. What is wrong and what is correct with my understanding?

As another example, we can also look at the Wolfram's description of quantum evolution (somewhat easier to interpret than Gorard's one):

But now we can make a potential identification with standard quantum formalism: we suppose that the Lagrangian density ℒ corresponds to the total flux in all directions (or, in other words, the divergence) of causal edges at each point in multiway space.

Unfortunately, there is no clear indication how one would exactly calculate an action from such description. It seems natural to think that the density ℒ is a property of nodes, and action corresponding to a path is a sum of ℒ over all nodes along the path. There is no direct confirmation of such interpretation in the texts, so I would like to get a confirmation that the interpretation is correct. And there is still a question of the arbitrary numerical constant that should be assigned to each path. Should I assume it to be equal to 1?

POSTED BY: Pavlo Bulanchuk
13 Replies
POSTED BY: Pavlo Bulanchuk

Just to summarize, I answered your question:

it is imperative to make sure that Wolfram model reproduces quantum mechanics to a satisfactory degree

with the reference of the Wolfram Model reproducing ZX calculus (a part of quantum mechanics). The other parts are work-in-progress. Concerning your other question

Representation of the updates in Wolfram Model by linear operators

I think that it is the other way around: the linear operators from quantum mechanics correspond to something in the Wolfram Model, but it is not that something in the Wolfram Model should be expressed as linear operators. I disagree with Jonathan's point of view (I am not saying that he is wrong, I just say that my conceptualization is different from his conceptualization)

we may interpret rewrite relations as being linear operators \hat{A} acting upon this space:

I prefer the other way around: the linear operator should be interpreted in the framework of the Wolfram model. The interpretation of the updates in the Wolfram Model as a linear operator is -in my opinion- a return to the previous paradigm.

The ZX paper is meant to answer the requirement

it is imperative to make sure that Wolfram model reproduces quantum mechanics to a satisfactory degree

ZX calculus is an important part of quantum mechanics. The adjective categorical is not about the physics, but about the mathematical framework in which quantum mechanics is expressed. Of course, ZX calculus is not the end of the story, it is just the beginning.

From what I can see, ZX calculus is a particular way of doing quantum computing. I am not sure though, what are the conclusions of the ZX paper about the mapping between ZX calculus and Wolfram model. The paper says in the conclusion:

[We] Demonstrated that the diagrammatic rewriting formalism of the ZX-calculus can indeed be embedded and realized within the more general formalism of Wolfram model multiway operator systems, using a novel reformulation of the Wolfram model in terms of double-pushout rewriting systems and adhesive categories.

I do not understand this. ZX calculus is "a graphical language for reasoning about linear maps between qubits", while Wolfram Model is a class of algorithms for updating graphs/strings/etc (with some physical meaning attached to the procedure). What does it even mean, that a language (ZX calculus) is imbedded into the model? Does it mean that "some "words" of the language are realized sometimes in some Wolfram models"? Or does it mean that we can "translate" ZX-calculus language into something made of Wolfram notations? To me, saying "ZX-calculus can be embedded and realized within the more general formalism of Wolfram model", is like saying "calculus can be realized and embedded within a more general formalism of electromagnetism" (in short, nonsense).

POSTED BY: Pavlo Bulanchuk
POSTED BY: Pavlo Bulanchuk
Posted 5 years ago

The first quote you give is also by Wolfram (not by Gorard) from his technical introduction. Almost all of the phenomena we know comply with quantum mechanics, so it is imperative to make sure that Wolfram model reproduces quantum mechanics to a satisfactory degree. I am talking here about the general structure of quantum mechanics, not some specific examples of particular fields or Schrodinger equation (which also would can be useful).

POSTED BY: Updating Name

Here is a reference to the reproduction of a part of categorical quantum mechanics in the Wolfram Model: the ZX calculus.

I am not sure I see how the paper really helps with the questions in the original post. Could you elaborate, please (I am not particularly knowledgeable in ZX calculus or categorical quantum information theory, so would be nice if you could make your point more or less self-contained)?

POSTED BY: Pavlo Bulanchuk

Regarding the presence of dimensional constants in the theory, you can find some ideas in the technical introduction: Units and Scales.

Unfortunately, I cannot help you with your other questions, because I am still trying to understand the other papers on general relativity (which I think that pedagogically precede the one you mentioned).

POSTED BY: Ruggero Valli
Posted 5 years ago

Thank you for the link. It was quite helpful in the sense that it clarified that Wolfram considers a single link in the multiway system to contribute about $10^{-116}$ to the phase of the path integral. We could assume this is the fundamental constant of "the" Wolfram model, which represents our universe.

POSTED BY: Updating Name
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard