Hi,
I will be more specific, starting the problem since begining:
1)I have these images (map of force due a potential, Fx and Fy) that I need to replicate the last two , using mathematica ( my  adviser wanted to use Fortran..., but  I am fighting to consolidate Mathematica coding in my department ) 

The potential that I need to Minimize at each step is:
-V *(2 Cos[(2 Pi x)/a]* 
  Cos[(2 Pi y)/(a Sqrt[3])] +  Cos[(4 Pi y)/(a Sqrt[3])]) + (k/2)*(X- x)^2 + (k/2)*(Y - y)^2
So, when I get the minima, or (x,y) positions, they will be used to the next step. I  use them like that:
 first step: 
  i(=X) = 0 and j (=Y)=0,  -> potential minimized -> x,y calculated.
 
 second step:
 
 i= 0 j=1, potential minimized using the last (x,y).....-> "new" x,y calculated..
 
 and so on...
 
And I am going collecting at each step the pairs (x,y) , that will be used to calculate the Map Forces Fx and Fy.
At the final I have an output.txt with all x,y, collected. and I use x for calculate Fx and y for calculate Fy.
and finally I make a table to plot Fx x X(or i) and Fy x Y(or j)
obs: "F = k* x" (oscilator)
well, and  I did a lot of tests (since august....) and the best images I could get (using contourplot) were (for Fx, and Fy, respectively) 
 The parameters:
(*a= 2.46 \[Angstrom]  = 2.46 10^-10m*)
(*k= 25 N/m  as 1 joule = N.m, so , N/m= eV/(16 \[Angstrom]^2)*)
And the code  is that:
 $HistoryLength = 0;
 
 ClearSystemCache[];
 
 ClearAll["Global`*"];
 
 SetDirectory["/home/marcelo/Documentos/Tomlinson/"];
 
 Block[{x, y, i, j, FmolaX, FmolaY, c = {0, 0}, a = 2.46, k = 1.5625, 
   V = 0.5},
       Emin[go_, ho_] := 
   Module[{g = go, h = ho}, {x, y} /. 
     Take[Flatten[
       N[FindMinimum[-V *(2 Cos[(2 Pi x)/a]* 
              Cos[(2 Pi y)/(a Sqrt[3])] + 
             Cos[(4 Pi y)/(a Sqrt[3])]) + (k/2)*(x - g)^2 + (k/
             2)*(y - h)^2, {{x, First[c]}, {y, Last[c]}}, 
         Method -> "PrincipalAxis"], 7]], -2]];
  
                                         Do[  
                                               If[j == 0, c = {0, i}];         (*<- to avoid contour problems in the beginning of the step, I can´t use the last x,y results, for the next i*)                               
   c = Emin[j, i]  ;                                                                           
   FmolaX = -16*k*(First[c] - (j))*(10^-10);                                               
   FmolaY = -16*k*(Last[c] - (i))*(10^-10);
     {FmolaX, FmolaY} >>>  "DataFxFyTomlinsonV20.txt";
                    c >>> "DataMinimTomlinsonV20.txt",
                                    
                                            (*Print[
   "the minima of the function related to step  Y",i," X",j,":",
   c],*)  {i, 0.0, 10.0, 0.1},   {j, 0.0, 10.0, 0.1}]
                                         ];
If you can  see, I did steps of 0.1, and each step I used the last pair of {x,y},of the minimized potential.
As my images were not so good, mainly Fy, I tried aplying the gradient :
F=-\[Del](x,y) Subscript[E, tot]
So , I got two eqautions from the potential, and then I tested NSolve for Fx=0 and Fy = 0.
Details, When I tested the model 1d worked fine! See below:
 equauni = 
 
   Quiet[NSolve[(2 \[Pi] )/ a Subscript[V, z]  Sin[(2 \[Pi] x)/a] + 
 
          k  (x - #) == 0, x, Reals] & /@ 
 
      Table[i, {i, 0, 10, 0.02}] /. {a -> 246/100, k -> 25/16, 
 
      Subscript[V, z] -> 5/10}] >> datateste1
equauni2 = Flatten[Take[{x} /. equauni // Simplify, All, 1]];
dataequani = Transpose[{Table[i, {i, 0, 10, 0.02}], equauni2}];
Map[Length, {equauni2}];
Map[Length, {Table[i, {i, 0, 10, 0.02}]}];
ListPlot[Tooltip[Transpose[{Table[i, {i, 0, 10, 0.02}], equauni2}]], 
 PlotStyle -> Green, 
 AxesLabel -> {Subscript[x, 0][\[Angstrom]], x[\[Angstrom]]}]
And calculating the Force:
 Fmola[x_, 
 
    d_] := -k  (x - 
 
      d)*(10^-10);(*converted to  Newton (N)*)
 
 ListPlot[Tooltip[
 
   Transpose[{  10^-10 equauni2, 
    Fmola[equauni2, Table[i, {i, 0, 10, 0.02}]] /. {a -> 246/100, 
      k -> 25/1, Subscript[V, z] -> 5/10}}]], 
 AxesLabel -> {x["m"], F["N"]}, AxesOrigin -> {0, 0}, 
 PlotRange -> All, ImageSize -> Large, PlotStyle -> Green, Mesh -> All]
I hope, this explanation can be more useful.